http://iet.metastore.ingenta.com
1887

access icon free Chaos-based fast colour image encryption scheme with true random number keys from environmental noise

Loading full text...

Full text loading...

/deliver/fulltext/iet-ipr/11/5/IET-IPR.2016.0040.html;jsessionid=2e06c67bch6sb.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-ipr.2016.0040&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Wang, X.Y., Gu, S.X., Zhang, Y.Q.: ‘Novel image encryption algorithm based on cycle shift and chaotic system’, Opt. Lasers Eng., 2015, 68, pp. 126134.
    2. 2)
      • 2. Enayatifar, R., Sadaei, H.J., Abdullah, A.H., et al: ‘A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata’, Opt. Lasers Eng., 2015, 71, pp. 3341.
    3. 3)
      • 3. Zhang, Y.Q., Wang, X.Y.: ‘A new image encryption algorithm based on non-adjacent coupled map lattices’, Appl. Soft Comput., 2015, 26, pp. 1020.
    4. 4)
      • 4. Cheng, P., Yang, H., Wei, P., et al: ‘A fast image encryption algorithm based on chaotic map and lookup table’, Nonlinear Dyn., 2015, 79, (3), pp. 21212131.
    5. 5)
      • 5. Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., et al: ‘A RGB image encryption algorithm based on total plain image characteristics and chaos’, Signal Process., 2015, 109, pp. 119131.
    6. 6)
      • 6. Akhshani, A., Akhavan, A., Lim, S.C., et al: ‘An image encryption scheme based on quantum logistic map’, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, (12), pp. 46534661.
    7. 7)
      • 7. El-Latif, A.A.A., Li, L., Wang, N., et al: ‘A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces’, Signal Process., 2013, 93, (11), pp. 29863000.
    8. 8)
      • 8. Yang, Y.G., Pan, Q.X., Sun, S.J., et al: ‘Novel image encryption based on quantum walks’, Sci. Rep., 2015, 5, article number: 7784.
    9. 9)
      • 9. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell Syst. Tech. J., 1949, 28, (4), pp. 656715.
    10. 10)
      • 10. Liu, H.J., Wang, X.Y.: ‘Color image encryption based on one-time keys and robust chaotic maps’, Comput. Math. Appl., 2010, 59, (10), pp. 33203327.
    11. 11)
      • 11. Liu, H.J., Wang, X.Y.: ‘Triple-image encryption scheme based on one-time key stream generated by chaos and plain images’, J. Syst. Softw., 2013, 86, (3), pp. 826834.
    12. 12)
      • 12. François, M., Grosges, T., Barchiesi, D., et al: ‘Pseudo-random number generator based on mixing of three chaotic maps’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (4), pp. 887895.
    13. 13)
      • 13. ECRYPT I I. Yearly Report on Algorithms and Keysizes (2012). D. SPA. 20 Rev. 1.0[R]. ICT-2007-216676 ECRYPT II, 2012.
    14. 14)
      • 14. Schneier, B.: ‘Applied cryptography: protocols, algorithms, and source code in C’ (John Wiley & Sons, 2007).
    15. 15)
      • 15. Akhshani, A., Akhavan, A., Mobaraki, A., et al: ‘Pseudo random number generator based on quantum chaotic map’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (1), pp. 101111.
    16. 16)
      • 16. Cicek, I., Pusane, A.E., Dundar, G.: ‘A novel design method for discrete time chaos based true random number generators’, Integr. VLSI J., 2014, 47, (1), pp. 3847.
    17. 17)
      • 17. Zhu, H.G., Zhao, C., Zhang, X.D., et al: ‘A novel iris and chaos-based random number generator’, Comput. Secur., 2013, 36, pp. 4048.
    18. 18)
      • 18. Reza, B., Mohammad, A.B., Amir, R.G.: ‘An approach to achieve modified projective synchronization between different types of fractional-order chaotic systems with time-varying delays’, Chaos Solitons Fractals, 2015, 78, pp. 95106.
    19. 19)
      • 19. Pan, I., Das, S., Das, S.: ‘Multi-objective active control policy design for commensurate and incommensurate fractional order chaotic financial systems’, Appl. Math. Model., 2015, 39, (2), pp. 500514.
    20. 20)
      • 20. Liu, C.X., Liu, T., Liu, L., et al: ‘A new chaotic attractor’, Chaos Solitons Fractals, 2004, 22, (5), pp. 10311038.
    21. 21)
      • 21. Levanova, T.A., Osipov, G.V., Pikovsky, A.: ‘Coherence properties of cycling chaos’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (8), pp. 27342739.
    22. 22)
      • 22. Xiao, D., Zhang, Y.S.: ‘Self-adaptive permutation and combined global diffusion for chaotic color image encryption’, AEU – Int. J. Electron. Commun., 2014, 68, (4), pp. 361368.
    23. 23)
      • 23. L'Ecuyer, P., Simard, R.: ‘TestU01: a software library in ANSI C for empirical testing of random number generators – user's guide’, Compact Version, 2013.
    24. 24)
      • 24. Zhang, Y.Q., Wang, X.Y.: ‘A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice’, Inf. Sci., 2014, 273, pp. 329351.
    25. 25)
      • 25. Dong, C.: ‘Color image encryption using one-time keys and coupled chaotic systems’, Signal Process., Image Commun., 2014, 29, (5), pp. 628640.
    26. 26)
      • 26. Yang, Y.G., Xu, P., Yang, R., et al: ‘Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption’, Sci. Rep., 2016, 6, article number: 19788.
    27. 27)
      • 27. Bellare, M., Kohno, T.: ‘Hash function balance and its impact on birthday attacks’. Int. Conf. on the Theory and Applications of Cryptographic Techniques, 2004, pp. 401418.
    28. 28)
      • 28. Chen, J., Zhu, Z., Fu, C., et al: ‘A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism’, Commun. Nonlinear Sci. Numer. Simul., 2015, 20, (3), pp. 846860.
    29. 29)
      • 29. Wu, X., Kan, H., Kurths, J.: ‘A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps’, Appl. Soft Comput., 2015, 37, pp. 2439.
    30. 30)
      • 30. Seyedzadeh, S.M., Sattar, M.: ‘A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map’, Signal Process., 2012, 92, pp. 12021215.
    31. 31)
      • 31. Norouzi, B., Mirzakuchaki, S.: ‘A fast color image encryption algorithm based on hyper-chaotic systems’, Nonlinear Dyn., 2014, 78, (2), pp. 9951015.
    32. 32)
      • 32. Kanso, A., Ghebleh, M.: ‘A fast and efficient chaos-based keyed hash function’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, pp. 109123.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0040
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address