Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Chaos-based fast colour image encryption scheme with true random number keys from environmental noise

Chaos-based fast colour image encryption scheme with true random number keys from environmental noise

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper proposes a chaos-based colour image encryption scheme, the highlight is that the randomly sampled noise signal is applied to serve as the initial values of a chaotic system. The 256-bit hash value of noise is transformed into the one-time initial values of the Liu system. The sequences generated by Liu system are subjected to three batteries of TestU01. Exclusive OR, the only operation, is applied to diffuse the pixels, and some measures are taken to speed up the encryption process. Finally, some statistical tests are performed to assess reliability and efficiency of the proposed cryptosystem in terms of time complexity and security.

References

    1. 1)
      • 10. Liu, H.J., Wang, X.Y.: ‘Color image encryption based on one-time keys and robust chaotic maps’, Comput. Math. Appl., 2010, 59, (10), pp. 33203327.
    2. 2)
      • 24. Zhang, Y.Q., Wang, X.Y.: ‘A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice’, Inf. Sci., 2014, 273, pp. 329351.
    3. 3)
      • 30. Seyedzadeh, S.M., Sattar, M.: ‘A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map’, Signal Process., 2012, 92, pp. 12021215.
    4. 4)
      • 16. Cicek, I., Pusane, A.E., Dundar, G.: ‘A novel design method for discrete time chaos based true random number generators’, Integr. VLSI J., 2014, 47, (1), pp. 3847.
    5. 5)
      • 3. Zhang, Y.Q., Wang, X.Y.: ‘A new image encryption algorithm based on non-adjacent coupled map lattices’, Appl. Soft Comput., 2015, 26, pp. 1020.
    6. 6)
      • 1. Wang, X.Y., Gu, S.X., Zhang, Y.Q.: ‘Novel image encryption algorithm based on cycle shift and chaotic system’, Opt. Lasers Eng., 2015, 68, pp. 126134.
    7. 7)
      • 7. El-Latif, A.A.A., Li, L., Wang, N., et al: ‘A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces’, Signal Process., 2013, 93, (11), pp. 29863000.
    8. 8)
      • 15. Akhshani, A., Akhavan, A., Mobaraki, A., et al: ‘Pseudo random number generator based on quantum chaotic map’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (1), pp. 101111.
    9. 9)
      • 5. Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., et al: ‘A RGB image encryption algorithm based on total plain image characteristics and chaos’, Signal Process., 2015, 109, pp. 119131.
    10. 10)
      • 23. L'Ecuyer, P., Simard, R.: ‘TestU01: a software library in ANSI C for empirical testing of random number generators – user's guide’, Compact Version, 2013.
    11. 11)
      • 4. Cheng, P., Yang, H., Wei, P., et al: ‘A fast image encryption algorithm based on chaotic map and lookup table’, Nonlinear Dyn., 2015, 79, (3), pp. 21212131.
    12. 12)
      • 8. Yang, Y.G., Pan, Q.X., Sun, S.J., et al: ‘Novel image encryption based on quantum walks’, Sci. Rep., 2015, 5, article number: 7784.
    13. 13)
      • 14. Schneier, B.: ‘Applied cryptography: protocols, algorithms, and source code in C’ (John Wiley & Sons, 2007).
    14. 14)
      • 26. Yang, Y.G., Xu, P., Yang, R., et al: ‘Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption’, Sci. Rep., 2016, 6, article number: 19788.
    15. 15)
      • 9. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell Syst. Tech. J., 1949, 28, (4), pp. 656715.
    16. 16)
      • 13. ECRYPT I I. Yearly Report on Algorithms and Keysizes (2012). D. SPA. 20 Rev. 1.0[R]. ICT-2007-216676 ECRYPT II, 2012.
    17. 17)
      • 21. Levanova, T.A., Osipov, G.V., Pikovsky, A.: ‘Coherence properties of cycling chaos’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (8), pp. 27342739.
    18. 18)
      • 17. Zhu, H.G., Zhao, C., Zhang, X.D., et al: ‘A novel iris and chaos-based random number generator’, Comput. Secur., 2013, 36, pp. 4048.
    19. 19)
      • 11. Liu, H.J., Wang, X.Y.: ‘Triple-image encryption scheme based on one-time key stream generated by chaos and plain images’, J. Syst. Softw., 2013, 86, (3), pp. 826834.
    20. 20)
      • 20. Liu, C.X., Liu, T., Liu, L., et al: ‘A new chaotic attractor’, Chaos Solitons Fractals, 2004, 22, (5), pp. 10311038.
    21. 21)
      • 19. Pan, I., Das, S., Das, S.: ‘Multi-objective active control policy design for commensurate and incommensurate fractional order chaotic financial systems’, Appl. Math. Model., 2015, 39, (2), pp. 500514.
    22. 22)
      • 2. Enayatifar, R., Sadaei, H.J., Abdullah, A.H., et al: ‘A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata’, Opt. Lasers Eng., 2015, 71, pp. 3341.
    23. 23)
      • 6. Akhshani, A., Akhavan, A., Lim, S.C., et al: ‘An image encryption scheme based on quantum logistic map’, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, (12), pp. 46534661.
    24. 24)
      • 28. Chen, J., Zhu, Z., Fu, C., et al: ‘A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism’, Commun. Nonlinear Sci. Numer. Simul., 2015, 20, (3), pp. 846860.
    25. 25)
      • 27. Bellare, M., Kohno, T.: ‘Hash function balance and its impact on birthday attacks’. Int. Conf. on the Theory and Applications of Cryptographic Techniques, 2004, pp. 401418.
    26. 26)
      • 22. Xiao, D., Zhang, Y.S.: ‘Self-adaptive permutation and combined global diffusion for chaotic color image encryption’, AEU – Int. J. Electron. Commun., 2014, 68, (4), pp. 361368.
    27. 27)
      • 25. Dong, C.: ‘Color image encryption using one-time keys and coupled chaotic systems’, Signal Process., Image Commun., 2014, 29, (5), pp. 628640.
    28. 28)
      • 18. Reza, B., Mohammad, A.B., Amir, R.G.: ‘An approach to achieve modified projective synchronization between different types of fractional-order chaotic systems with time-varying delays’, Chaos Solitons Fractals, 2015, 78, pp. 95106.
    29. 29)
      • 12. François, M., Grosges, T., Barchiesi, D., et al: ‘Pseudo-random number generator based on mixing of three chaotic maps’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (4), pp. 887895.
    30. 30)
      • 29. Wu, X., Kan, H., Kurths, J.: ‘A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps’, Appl. Soft Comput., 2015, 37, pp. 2439.
    31. 31)
      • 31. Norouzi, B., Mirzakuchaki, S.: ‘A fast color image encryption algorithm based on hyper-chaotic systems’, Nonlinear Dyn., 2014, 78, (2), pp. 9951015.
    32. 32)
      • 32. Kanso, A., Ghebleh, M.: ‘A fast and efficient chaos-based keyed hash function’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, pp. 109123.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0040
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address