Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Context-based prediction filtering of impulse noise images

Loading full text...

Full text loading...

/deliver/fulltext/iet-ipr/10/6/IET-IPR.2015.0702.html;jsessionid=1vd9hx5bq2uue.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-ipr.2015.0702&mimeType=html&fmt=ahah

References

    1. 1)
      • 11. Duan, D., Mo, Q., Wan, Y., et al: ‘A detail preserving filter for impulse noise removal’. Int. Conf. on Computer Application and System Modeling, Taiyuan, China, October 2010, pp. 265268.
    2. 2)
      • 23. Surrah, H.A.: ‘Impulse noise removal from highly corrupted images using new hybrid technique based on neural networks and switching filters’, J. Global Res. Comput. Sci., 2014, 5, (3), pp. 17.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 30. Marques, A., Belo, O.: ‘Discovering student web usage profiles using Markov chains’, Electron. J. e-Learn., 2011, 9, (1), pp. 6374.
    7. 7)
      • 33. Mushtaq, A., Lee, C.-H.: ‘An integrated approach to feature compensation combining particle filters and hidden Markov model for robust speech recognition’. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Kyoto, Japan, March 2012, pp. 47574760.
    8. 8)
      • 27. Estrada, F., Fleet, D., Jepson, A.: ‘Stochastic image denoising’. British Machine Vision Conf., London, September 2009, p. 117.
    9. 9)
    10. 10)
      • 17. Soares, P.L.B., Silva, J.P.: ‘Neural networks applied for impulse noise reduction from digital images’, INFOCOMP J. Comput. Sci., 2012, 11, (3–4), pp. 714.
    11. 11)
      • 32. Cao, G., Nie, J.-Y., Bai, J.: ‘Using Markov chains to exploit word relationships in information retrieval’. Eighth Conf. on Large-Scale Semantic Access to Content, Pittsburgh, PA, USA, 2007, pp. 388402.
    12. 12)
    13. 13)
      • 21. Xie, J., Xu, L., Chen, E.: ‘Image denoising and inpainting with deep neural networks’. Advances in Neural Information Processing Systems 25, Lake Tahoe, NV, USA, December 2012, pp. 350358.
    14. 14)
    15. 15)
      • 19. Mishra, S.K., Panda, G., Meher, S.: ‘Chebyshev functional link artificial neural networks for denosing of image corrupted by salt and pepper noise’, ACEEE Int. J. Signal Image Process., 2010, 1, (1), pp. 4246.
    16. 16)
      • 2. Bhatia, A., Kulkarni, R.K.: ‘Removal of high density salt-and-pepper noise through improved adaptive median filter’. Int. Conf. on Computer Science and Information Technology, Bangalore, May 2012, pp. 197200.
    17. 17)
    18. 18)
      • 16. Aizenberg, I., Wallace, G.: ‘Intelligent detection of impulse noise using multilayer neural network with multi-valued neurons’. Image Processing: Algorithms and Systems X and Parallel Processing for Imaging Applications II, February 2012, p. 82950S.
    19. 19)
      • 29. Jääskinen, V., Parkkinen, V., Cheng, L., et al: ‘Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model’, Stat. Appl. Genet. Mol. Biol., 2014, 13, (1), pp. 105121.
    20. 20)
      • 14. Lin, T.C.: ‘SVM-based filter using evidence theory and neural network for image denoising’, J. Softw. Eng. Appl., 2013, 6, (3B), pp. 106110.
    21. 21)
    22. 22)
      • 26. Buades, A., Coll, B., Morel, J.-M.: ‘A non-local algorithm for image denosing’. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, vol. 2, pp. 6065.
    23. 23)
    24. 24)
      • 3. Lal, S., Kumar, S., Chandra, M.: ‘Removal of high density salt & pepper noise through super mean filter for natural images’, Int. J. Comput. Sci. Issues, 2012, 9, (3), pp. 303309.
    25. 25)
    26. 26)
      • 36. Gellert, A., Florea, A.: ‘Web page prediction enhanced with confidence mechanism’, J. Web Eng., 2014, 13, (5–6), pp. 507524.
    27. 27)
    28. 28)
      • 15. Deng, C., Liu, H.M., Wang, Z.H.: ‘Applying an improved neural network to impulse noise removal’. Int. Conf. on Wavelet Analysis and Pattern Recognition, Qingdao, China, July 2010, pp. 207210.
    29. 29)
      • 37. Majumdar, A., Ward, R.K.: ‘Synthesis and analysis prior algorithms for joint-sparse recovery’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, March 2012, pp. 34213424.
    30. 30)
      • 12. Jassim, F.A.: ‘Kriging interpolation filter to reduce high density salt and pepper noise’, World Comput. Sci. Inf. Technol. J., 2013, 3, (1), pp. 814.
    31. 31)
      • 34. Gellert, A., Florea, A., Vintan, M., et al: ‘Unbiased branches: an open problem’. Twelfth Asia-Pacific Computer Systems Architecture Conf., Seoul, Korea, August 2007, pp. 1627.
    32. 32)
      • 24. Chen, S., Shi, W., Zhang, W.: ‘An efficient universal noise removal algorithm combining spatial gradient and impulse statistic’, Math. Probl. Eng., 2013, 2013, p. 480274.
    33. 33)
      • 20. Agostinelli, F., Anderson, M.R., Lee, H.: ‘Adaptive multi-column deep neural networks with application to robust image denosing’. Advances in Neural Information Processing Systems 26, Lake Tahoe, NV, USA, December 2013, pp. 14931501.
    34. 34)
    35. 35)
    36. 36)
      • 31. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: ‘Next place prediction using mobility Markov chains’. Proc. of the First Workshop on Measurement, Privacy, and Mobility, New York, USA, April 2012, p. 3.
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2015.0702
Loading

Related content

content/journals/10.1049/iet-ipr.2015.0702
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address