access icon free Single image dehazing via multi-scale gradient domain contrast enhancement

Outdoor images captured under bad weathers often suffer from low visibility. In this study, a novel method is presented to improve the visibility of a single input hazy image. On the basis of the observation that degradation of a hazy image occurs both in contrast and colour, the authors method aims at compensating the contrast and colour of the image, respectively. To achieve this, they propose a multi-scale gradient domain contrast enhancement approach that handles the different residual images rather than the entire image, and correct the attenuation of colour according to the estimated transmission. Since there is no need to recover the scene radiance by the degradation model, their method depends less on the accuracy of transmission and does not require the estimation of atmospheric light. Experiments on a variety types of hazy images show that their method yields accurate results with fine details and vivid colour, even better than other state-of-the-art dehazing methods.

Inspec keywords: image enhancement; image colour analysis; gradient methods

Other keywords: image contrast compensation; bad weathers; single image dehazing; hazy image degradation; multiscale gradient domain contrast enhancement; visibility improvement; image colour compensation

Subjects: Interpolation and function approximation (numerical analysis); Optical, image and video signal processing; Interpolation and function approximation (numerical analysis); Computer vision and image processing techniques

References

    1. 1)
    2. 2)
      • 20. Schaul, L., Fredembach, C., Süsstrunk, S.: ‘Color image dehazing using the near-infrared’. ICIP, 2009, pp. 16291632.
    3. 3)
      • 10. Tan, R.T.: ‘Visibility in bad weather from a single image’. IEEE Conf. on Computer Vision and Pattern Recognition. CVPR 2008, 2008, pp. 18.
    4. 4)
      • 4. Treibitz, T., Schechner, Y.Y.: ‘Polarization: beneficial for visibility enhancement?’. IEEE Conf. on Computer Vision and Pattern Recognition, 2009. CVPR 2009, 2009, pp. 525532.
    5. 5)
      • 21. Fattal, R., Lischinski, D., Werman, M.: ‘Gradient domain high dynamic range compression’. ACM Transactions on Graphics (TOG), 2002, vol. 21, no. 3, pp. 249256.
    6. 6)
      • 8. Fattal, R.: ‘Single image dehazing’. ACM Transactions on Graphics (TOG), 2008, vol. 27, no. 3, p. 72.
    7. 7)
    8. 8)
      • 6. Kopf, J., Neubert, B., Chen, B., et al: ‘Deep photo: model-based photograph enhancement and viewing’. ACM Transactions on Graphics (TOG), 2008, vol. 27, no. 5, p. 116.
    9. 9)
    10. 10)
      • 16. Tarel, J.-P., Hautiere, N.: ‘Fast visibility restoration from a single color or gray level image’. 2009 IEEE 12th Int. Conf. on Computer Vision, 2009, pp. 22012208.
    11. 11)
      • 19. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’. ACM Transactions on Graphics (TOG), 2008, vol. 27, no. 3, p. 67.
    12. 12)
    13. 13)
      • 7. Narasimhan, S.G., Nayar, S.K.: ‘Interactive (de) weathering of an image using physical models’. IEEE Workshop on Color and Photometric Methods in Computer Vision, France, 2003, vol. 6, no. 6.4, p. 1.
    14. 14)
      • 3. Shwartz, S., Namer, E., Schechner, Y.Y.: ‘Blind haze separation’. 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006, vol. 2, pp. 19841991.
    15. 15)
      • 2. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: ‘Instant dehazing of images using polarization’. Proc. of the 2001 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2001. CVPR 2001, 2001, vol. 1, pp. I325.
    16. 16)
    17. 17)
      • 13. Fattal, R.: ‘Dehazing using color-lines’. ACM Transaction on Graphics, 2014, vol. 34, no. 1, pp. 13:113:14.
    18. 18)
      • 18. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. Computer Vision, 1998. Sixth Int. Conf. on, 1998, pp. 839846.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 15. Koschmieder, H.: ‘Theorie der horizontalen sichtweite’, Beitrage zur Phys. Freien Atmosphare, 1924, 12, (4), pp. 171181.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2015.0112
Loading

Related content

content/journals/10.1049/iet-ipr.2015.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading