http://iet.metastore.ingenta.com
1887

Robust moving object detection using compressed sensing

Robust moving object detection using compressed sensing

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Moving object detection plays a key role in video surveillance. A number of object detection methods have been proposed in the spatial domain. In this study, the authors propose a compressed sensing-based algorithm for the detection of moving object. They first use a practical three-dimensional circulant sampling method to yield sampled measurements. Then, they propose an object detection model to simultaneously reconstruct the foreground support, background and video sequence using the sampled measurements directly. Experimental results show that the proposed moving object detection algorithm outperforms the state-of-the-art approaches and it is robust to the movement turbulence, camera motion and video noise.

References

    1. 1)
    2. 2)
    3. 3)
      • 3. Viola, P., Jones, M.J., Snow, D.: ‘Detecting pedestrians using patterns of motion and appearance’. Proc. IEEE Int. Conf. on Computer Vision, 2001.
    4. 4)
      • 4. Karmann, K., Brandt, A., Gerl, R.: ‘Moving object segmentation based on adaptive reference images’. European Signal Processing Conf., 1990.
    5. 5)
      • 5. Koller, D., Weber, J., Huang, T., et al: ‘Towards robust automatic traffic scene analysis in real-time’. Proc. Int. Conf. on Pattern Recognition, 1994.
    6. 6)
    7. 7)
      • 7. Stauffer, C., Grimson, W.E.L.: ‘Adaptive background mixture models for real-time tracking’, 1999.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 16. Cevher, V., Sankaranarayanan, A., Duarte, M., Reddy, D., Baraniuk, R., Chellappa, R.: ‘Compressive sensing for background subtraction’. Proc. European Conf. on Computer Vision (ECCV), 2008.
    17. 17)
    18. 18)
      • 18. Yang, F., Jiang, H., Shen, Z., Deng, W., Metaxas, D.: ‘Adaptive low rank and sparse decomposition of video using compressive sensing’. Proc. IEEE Int. Conf. on Image Processing (ICIP), 2013, pp. 10161020.
    19. 19)
      • 19. Shu, X., Ahuja, N.: ‘Imaging via three-dimensional compressive sampling (3DCS)’. IEEE Int. Conf. on Computer Vision (ICCV), 2011, pp. 439446.
    20. 20)
    21. 21)
    22. 22)
      • 22. Le Montagner, Y., Angelini, E., Olivo-Marin, J.C.: ‘Video reconstruction using compressed sensing measurements and 3D total variation regularization for bio-imaging applications’. IEEE Int. Conf. on Image Processing (ICIP), 2012, pp. 917920.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 28. Szeliski, R.: ‘Computer vision: algorithms and applications’ (Springer, New York, 2010).
    29. 29)
      • 29. Yin, W., Morgan, S., Yang, J., Zhang, Y.: ‘Practical compressive sensing with Toeplitz and circulant matrices’. Visual Communications and Image Processing, Huangshan, China, 2010.
    30. 30)
      • 30. Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H.: ‘Fixed-point algorithms for inverse problems in science and engineering’ (Springer-Verlag, New York, 2011).
    31. 31)
    32. 32)
    33. 33)
      • 33. Candes, E.J., Li, X., Ma, Y., Wright, J.: ‘Robust principal component analysis?’, J. ACM, 2009, 58, (1), pp. 137.
    34. 34)
      • 34. Stauffer, C., Grimson, W.E.L.: ‘Adaptive background mixture models for real-time tracking’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR), 1999, vol. 2, p. 252.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2015.0103
Loading

Related content

content/journals/10.1049/iet-ipr.2015.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address