http://iet.metastore.ingenta.com
1887

Variable bit rate video traffic prediction based on kernel least mean square method

Variable bit rate video traffic prediction based on kernel least mean square method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the problem of variable bit rate (VBR) video traffic prediction is addressed. VBR traffic prediction is necessary in dynamic bandwidth allocation for multimedia quality of service control strategies. Autoregressive (AR) models have been widely used in VBR traffic prediction where the least mean square (LMS)-based methods were utilised for parameter estimation. However, they are ineffective when the traffic is dynamic in nature. In this study, using the Brock, Dechert, and Scheinkman (BDS) test, it is shown that the video traffic is non-linear. Kernel is an efficient tool to convert non-linear data into linear one in a higher-dimensional space. The kernel LMS (KLMS) method is proposed to forecast the next frame sizes of I, B and P frames as well as the next group-of-pictures (GOP) size of video traffic. Extensive simulations were performed on different video traces where different performance metrics were considered. KLMS results were very close to those of the Wiener–Hopf optimum solution and better than the results of commonly used normalised LMS and other algorithms such as the least mean kurtosis (LMK), wavelet LMK, adaptive network fuzzy inference system (ANFIS) and neural networks.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 5. Adas, A.: ‘Supporting real time VBR video using dynamic reservation based on linear prediction’. INFOCOM'96. 15th Annual Joint Conf. of the IEEE Computer Societies. Networking the Next Generation. Proc. IEEE, 1996, pp. 14761483.
    6. 6)
    7. 7)
      • 7. Wang, X., Jung, S., Meditch, J.S.: ‘Dynamic bandwidth allocation for VBR video traffic using adaptive wavelet prediction’. 1998 IEEE Int. Conf. on Communications, 1998. ICC 98. Conf. Record, 1998, pp. 549553.
    8. 8)
    9. 9)
    10. 10)
      • 10. Lee, K.Y., Cho, K.-S., Lee, B.-S.: ‘Efficient traffic prediction algorithm of multimedia traffic for scheduling the wireless network resources’. IEEE Int. Symp. on Consumer Electronics, 2007. ISCE 2007, 2007, pp. 15.
    11. 11)
      • 11. Xu, W., Qureshi, A.: ‘Adaptive linear prediction of MPEG video traffic’. Proc. of the Fifth Int. Symp. on Signal Processing and its Applications, 1999. ISSPA'99, 1999, pp. 6770.
    12. 12)
    13. 13)
      • 13. Lanfranchi, L., Bing, B.: ‘Short-term MPEG-4 AVC bandwidth prediction for broadband cable networks’. Communication Networks and Services Research Conf., 2008. CNSR 2008. Sixth Annual, 2008, pp. 2529.
    14. 14)
      • 14. Zhao, H., Ansari, N., Shi, Y.Q.: ‘Self-similar traffic prediction using least mean kurtosis’. Int. Conf. on Information Technology: Coding and Computing [Computers and Communications], 2003. Proc. ITCC 2003, 2003, pp. 352355.
    15. 15)
      • 15. Zhao, H., Ansari, N., Shi, Y.Q.: ‘A fast non-linear adaptive algorithm for video traffic prediction’. Int. Conf. on Information Technology: Coding and Computing, 2002. Proc., 2002, pp. 5458.
    16. 16)
      • 16. Box, G.E., Jenkins, G.M., Reinsel, G.C.: ‘Time series analysis: forecasting and control’ (John Wiley & Sons, New Jersey, 2008).
    17. 17)
      • 17. Sadek, N., Khotanzad, A.: ‘Multi-scale high-speed network traffic prediction using k-factor Gegenbauer ARMA model’. 2004 IEEE Int. Conf. on Communications, 2004, pp. 21482152.
    18. 18)
      • 18. Shenghui, W., Zhengding, Q.: ‘Multifractal analysis and prediction of VBR video traffic’. 2006 Sixth Int. Conf. on ITS Telecommunications Proc., 2006, pp. 12281231.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 24. Doulamis, A., Doulamis, N., Kollias, S.D.: ‘Recursive non linear models for on line traffic prediction of VBR MPEG coded video sources’. Proc. of the IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks, 2000. IJCNN 2000, 2000, pp. 114119.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 28. Haykin, S.: ‘Adaptive filtering theory’ (Prentice-Hall, New Jersey, 2002).
    29. 29)
      • 29. Hayes, M.H.: ‘Statistical digital signal processing and modeling’ (John Wiley and Sons, Inc., NJ, USA, 1996).
    30. 30)
      • 30. Liu, H., Mao, G.: ‘Prediction algorithms for real-time variable-bit-rate video’. 2005 Asia-Pacific Conf. on Communications, 2005, pp. 664668.
    31. 31)
    32. 32)
      • 32. Chong, S., Li, S.-q., Ghosh, J.: ‘Dynamic bandwidth allocation for efficient transport of real-time VBR video over ATM’. INFOCOM'94. Networking for Global Communications, 13th Proc. IEEE, 1994, pp. 8190.
    33. 33)
    34. 34)
      • 34. Zhao, H.: ‘A practical wavelet domain LMK algorithm for predicting multimedia traffic’. IEEE Int. Conf. on Communications, 2008. ICC'08, 2008, pp. 515519.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 38. Liu, W., Principe, J.C., Haykin, S.: ‘Kernel adaptive filtering: a comprehensive introduction’ (John Wiley & Sons, New Jersey, 2011), vol. 57.
    39. 39)
      • 39. Papert, M.M.S.: ‘Perceptrons: an introduction to computational geometry’, Expanded Edition, 1969.
    40. 40)
    41. 41)
    42. 42)
      • 42. Príncipe, J.C., De Vries, B., Kuo, J.-M., De Oliveira, P.G.: ‘Modeling applications with the focused gamma net’. NIPS, 1991, pp. 143150.
    43. 43)
      • 43. Abe, S.: ‘Support vector machines for pattern classification’ (Springer, UK, 2010).
    44. 44)
      • 44. Shawe-Taylor, J., Cristianini, N.: ‘Kernel methods for pattern analysis’ (Cambridge University Press, London, United Kingdom, 2004).
    45. 45)
      • 45. Pokharel, P.P., Liu, W., Principe, J.C.: ‘Kernel LMS’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2007. ICASSP 2007, 2007, pp. III-1421III-1424.
    46. 46)
      • 46. Huang, T.-M., Kecman, V., Kopriva, I.: ‘Kernel based algorithms for mining huge data sets: supervised, semi-supervised, and unsupervised learning’ (Springer, Warsaw, 2006), vol. 17.
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
      • 52. Madisetti, V.: ‘Digital signal processing fundamentals’ (CRC press, Boca Raton, 2010).
    53. 53)
      • 53. Cha, S.-H.: ‘Comprehensive survey on distance/similarity measures between probability density functions’, City, 2007, 1, p. 1.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2014.1035
Loading

Related content

content/journals/10.1049/iet-ipr.2014.1035
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address