http://iet.metastore.ingenta.com
1887

Moving visual focus in salient object segmentation

Moving visual focus in salient object segmentation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Saliency detection plays an important role in image segmentation, object detection and retrieval, which attracts more attention in the field of computer vision recently. Most existing saliency detection algorithms have not considered the influence of visual focus (VF) shifting yet. In this study, a novel algorithm named moving region contrast (MRC) is proposed to analyse image saliency. The algorithm MRC is built on a novel concept of moving VF. The initial VF is defined as the geometric centre of the image. Then the VF is calculated iteratively by focus-moving technique where a saliency gravitation model is employed to determine the moving direction. The salient region is obtained according to the final VF. The experiments are conducted on the dataset with 1000 images released by Achanta. Experimental results show that the proposed algorithm achieves marked improvements in performance and outperforms other 11 popular algorithms.

References

    1. 1)
      • 1. Hirata, K., Kasutani, E., Hara, Y.: ‘On image segmentation for object-based image retrieval’. Proc. IEEE Int. Conf. Pattern Recognition, August 2002, pp. 10311034.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 7. Walther, D., Itti, L., Riesenhuber, M., Poggio, T., Koch, C.: ‘Attentional selection for object recognition a gentle way’. Proc. Biologically Motivated Computer Vision, November 2002, pp. 472479.
    8. 8)
      • 8. Fussenegger, M., Opelt, A., Pinz, A., Auser, P.: ‘Object recognition using segmentation for feature detection’. Proc. IEEE Int. Conf. Pattern Recognition, August 2004, pp. 4144.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 12. Achanta, R., Estrada, F., Wils, P., Susstrunk, S.: ‘Salient region detection and segmentation’. Proc. Int. Conf. on Computer Vision, May 2008, pp. 6675.
    13. 13)
    14. 14)
    15. 15)
      • 15. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: ‘Global contrast based salient region detection’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, June 2011, pp. 409416.
    16. 16)
    17. 17)
      • 17. Li, J., Gao, W.: ‘Visual saliency computation – a machine learning perspective’ (Springer, 2014), vol. 8408.
    18. 18)
      • 18. Koch, C., Ullman, S.: ‘Shifts in selective visual attention: towards the underlying neural circuitry’, Lecture notes in Computer Science, Human Neurobiol., 1985, 4, pp. 219227.
    19. 19)
    20. 20)
      • 20. Frintrop, S., Klodt, M., Rome, E.: ‘A real-time visual attention system using integral images’. Proc. Int. Conf. Computer Vision Systems, March 2007.
    21. 21)
      • 21. Ma, Y.F., Zhang, H.J.: ‘Contrast-based image attention analysis by using fuzzy growing’. Proc. ACM Int. Conf. Multimedia, November 2003, pp. 374381.
    22. 22)
      • 22. Hou, X.D., Zhang, L.: ‘Saliency detection: a spectral residual approach’. Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, June 2007, pp. 18.
    23. 23)
      • 23. Zhai, Y., Shah, M.: ‘Visual attention detection in video sequences using spatiotemporal cues’. Proc. Int. Conf. ACM Multimedia, October 2006, pp. 815824.
    24. 24)
      • 24. Goferman, S., Zelnik-Manor, L., Tal, A.: ‘Context-aware saliency detection’. Proc. IEEE Int. Conf. Computer Vision Pattern Recognition, June 2010, pp. 23762383.
    25. 25)
      • 25. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: ‘Frequency-tuned salient region detection’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, June 2009, pp. 15971604.
    26. 26)
      • 26. Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: ‘Saliency filters: contrast based filtering for salient region detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp. 733740.
    27. 27)
    28. 28)
      • 28. Achanta, R., Susstrunk, S.: ‘Saliency detection using maximum symmetric surround’. Proc. IEEE Int. Conf. Image Processing, September 2010, pp. 26532656.
    29. 29)
      • 29. Liu, T., Zheng, N.N., Tang, X.O., Shum, H.Y.: ‘Learning to detect a salient object’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 33, (2), pp. 353366.
    30. 30)
    31. 31)
    32. 32)
      • 32. Harel, J., Koch, C., Perona, P.: ‘Graph-based visual saliency’. Proc. IEEE Int. Conf. Advances in Neural Information Processing Systems, December 2006, pp. 545552.
    33. 33)
    34. 34)
    35. 35)
      • 35. Kim, J., Grauman, K.: ‘Shape sharing for object segmentation’. Proc. ECCV in Computer Vision, October 2012, pp. 444458.
    36. 36)
      • 36. Ren, X.F., Malik, J.: ‘Learning a classification model for segmentation’. Proc. IEEE Int. Conf. Computer Vision, October 2003, pp. 1017.
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2014.0987
Loading

Related content

content/journals/10.1049/iet-ipr.2014.0987
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address