http://iet.metastore.ingenta.com
1887

Robust deblurring based on prediction of informative structure

Robust deblurring based on prediction of informative structure

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a robust motion deblurring method in which an adaptive prediction is used to extract the informative regions for kernel estimation. The prediction not only sharpens the blurry edges, but also adaptively predicts the large scale structure for kernel estimation. It allows to only use the alternating minimisation with a computationally efficient Gaussian prior for both the image and kernel while without employing thoughtful attention such as multi-scale scheme or kernel refinement. Extensive experiments were carried out to validate the proposed method and to compare it with some previous approaches. The experiment results demonstrated that the approach achieves, if not better than, state-of-the-art results for uniformly blurred images.

References

    1. 1)
      • 1. Xu, L., Jia, J.: ‘Two-phase kernel estimation for robust motion deblurring’. Proc. ECCV, 2010, pp. 157170.
    2. 2)
    3. 3)
      • 3. Jia, J.: ‘Single image motion deblurring using transparency’. Proc. CVPR, 2007, pp. 18.
    4. 4)
    5. 5)
      • 5. Joshi, N., Szeliski, R., Kriegman, D.J.: ‘Psf estimation using sharp edge prediction’. Proc. CVPR, 2008, pp. 18.
    6. 6)
    7. 7)
      • 7. Cai, J.F., Ji, H., Liu, C., Shen, Z.: ‘Blind motion deblurring from a single image using sparse approximation’. Proc. CVPR, 2009, pp. 104111.
    8. 8)
      • 8. Sun, L., Cho, S., Wang, J., Hays, J.: ‘Edge-based blur kernel estimation using patch priors’. Proc. IEEE Int. Conf. on Computational Photography (ICCP), April 2013, pp. 18.
    9. 9)
      • 9. Xu, L., Zheng, S., Jia, J.: ‘Unnatural L0 sparse representation for natural image deblurring’. Proc. CVPR, 2013, pp. 11071114.
    10. 10)
      • 10. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: ‘Understanding and evaluating blind deconvolution algorithms’. Proc. CVPR, 2009, pp. 19641971.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 14. Dai, S., Wu, Y.: ‘Motion from blur’. Proc. CVPR, 2008, pp. 18.
    15. 15)
      • 15. Ji, H., Liu, C.: ‘Motion blur identification from image gradients’. Proc. CVPR, 2008, pp. 18.
    16. 16)
    17. 17)
    18. 18)
      • 18. Cho, S., Matsushita, Y., Lee, S.: ‘Removing non-uniform motion blur from images’. Proc. ICCV, 2007, pp. 18.
    19. 19)
    20. 20)
    21. 21)
      • 21. Tai, Y.W., Du, H., Brown, M.S., Lin, S.: ‘Image/video deblurring using a hybrid camera’. Proc. CVPR, 2008, pp. 18.
    22. 22)
    23. 23)
    24. 24)
      • 24. Krishnan, D., Tay, T., Fergus, R.: ‘Blind deconvolution using a normalized sparsity measure’. Proc. CVPR, 2011, pp. 233240.
    25. 25)
      • 25. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: ‘Efficient marginal likelihood optimization in blind deconvolution’. Proc. CVPR, 2011, pp. 26572664.
    26. 26)
      • 26. Wang, Y., Yin, W.: ‘Compressed sensing via iterative support detection’. CAAM Technical Report TR09-30, 2009.
    27. 27)
    28. 28)
      • 28. Wiener, N.: ‘Extrapolation, interpolation, and smoothing of stationary time series’ (MIT Press, 1964).
    29. 29)
    30. 30)
      • 30. Zoran, D., Weiss, Y.: ‘From learning models of natural image patches to whole image restoration’. Proc. ICCV, 2011, pp. 479486.
    31. 31)
      • 31. Hu, Z., Yang, M.-H.: ‘Good regions to deblur’. Proc. ECCV, 2012, pp. 5972.
    32. 32)
    33. 33)
      • 33. Weickert, J.: ‘Coherence-enhancing shock filters’, Lect. Notes Comput. Sci., 2003, 2781, pp. 18.
    34. 34)
    35. 35)
      • 35. Koehler, R., Hirsch, M., Harmeling, S., Mohler, B., Scholkopf, B.: ‘Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database’. Proc. ECCV, 2012, pp. 2740.
    36. 36)
      • 36. Sun, L., Hays, J.: ‘Super-resolution from internet-scale scene matching’. Proc. ICCP, 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2014.0948
Loading

Related content

content/journals/10.1049/iet-ipr.2014.0948
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address