Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automatic detection and removal of high-density impulse noises

This study presents a novel method for automatic detection and removal of high-density impulse noises. The method consists of two parts: the impulse detection part and the impulse noise removal part. In impulse detection part, an automatic detector based on local mean and variance (LMVD) is presented, which can automatically pick out noisy image from massive images and output corrupted grey levels. The detector utilises LMVD of the neighbourhood of corrupted pixels to simulate the cognitive processes of human observing noisy image. In impulse noise removal part, the Newton–Thiele filter (NTF) instead of median filter is applied to remove impulse noise. The process to construct NTF can be divided into two steps: setting up the grid and constructing the Newton–Thiele's rational interpolation on the grid. First, eight adjacent pixels of the corrupted centre pixel are used to construct the two-dimensional grid. If a pixel in the grid is corrupted, a four-direction linear interpolation algorithm will be performed to provide a rough estimate to the corrupted pixel. Second, the corrupted centre pixel value will be updated by Newton–Thiele's rational interpolation on the grid. The NTF has better robustness than existing filters because it does not need to adjust window size or other parameters. Simulations reveal that the proposed detector and filter have perfect performance in terms of both quantitative evaluation and visual quality, especially it can remove the impulse noise effectively even at 90% noise level.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 1. Astola, J., Kuosmaneen, P.: ‘Fundamentals of nonlinear digital filtering’ (CRC, Boca Raton, FL, 1997).
    9. 9)
    10. 10)
    11. 11)
      • 11. Aiswarya, K., Jayaraj, V., Ebenezer, D.: ‘A new and efficient algorithm for the removal of high density salt and pepper noise in images and videos’. Second Int. Conf. Computer Modeling and Simulation, 2010, pp. 409413.
    12. 12)
      • 24. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Prentice-Hall, Englewood Cliffs, NJ, 2002).
    13. 13)
      • 30. Huo, X., Tan, J.: ‘Bivariate rational interpolant in image inpainting’, J. Inf. Comput. Sci., 2005, 2, (3), pp. 487492.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 28. Tan, J.Q.: ‘The limiting case of Thiele's interpolating continued fraction expansion’, J. Comput. Math., 2001, 19, (4), pp. 433444.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 27. Lorentzen, L., Waadeland, H.: ‘Continued fractions with applications’ (Elsevier Science Publishers, BV, 1992).
    22. 22)
    23. 23)
      • 29. Tan, J.Q., Zhao, Q.J.: ‘Successive Newton-Thiele's rational interpolation’, J. Inf. Comput. Sci., 2005, 2, (2), pp. 295301.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 21. Syamala Jayasree, P., Raj, P., Kumar, P., Siddavatam, R., Ghrera, S.P.: ‘A fast novel algorithm for salt and pepper image noise cancellation using cardinal B-splines’, Signal Image Video Process., 2012, 5, (2), pp. 18.
    28. 28)
    29. 29)
      • 25. Ground truth databases. Available from http://www.cs.washington.edu/research/imagedatabase/.
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2014.0286
Loading

Related content

content/journals/10.1049/iet-ipr.2014.0286
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address