Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Stabilising illumination variations in motion detection for surveillance applications

Since illumination variations may cause the misinterpretation of data for various higher vision applications and algorithms, this study aims to reduce such influence. In order to obtain a motion mask, which is input for a higher vision application, wavelet coefficients are calculated by applying two-dimensional lifting wavelet transform with two mother wavelets. Energy is calculated from the obtained wavelet coefficients. Morphological operations are used to improve output image. The developed algorithm is a robust algorithm further reducing false alarm readings caused by illumination variations (better false detection rate and percentage of correct classifications).

References

    1. 1)
      • 12. Patel, B., Patel, N.: ‘Motion detection based on multi frame video under surveillance system’, Int. J. Comput. Sci. Netw. Secur., 2012, 12, (3), pp. 100107.
    2. 2)
      • 13. Tolba, M.F., Bahgat, S.F., Al-Berry, M.N.: ‘Wavelet-enhanced detection of low contrast objects moving in environments with varying illumination’, Int. J. Intell. Coop. Inf. Syst., 2005, 5, (1), pp. 395412.
    3. 3)
      • 2. Wu, Y.T., Kanade, T., Cohn, J., Li, C.C. : ‘Optical flow estimation using wavelet motion model’. Proc. Book of the Sixth IEEE Int. Conf. Computer Vision, Bombay, India, January 1998, pp. 992998.
    4. 4)
      • 18. Vujović, I.: ‘Suppressing illumination variations in motion detection by wavelet transform’. PhD Thesis, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, 2011.
    5. 5)
      • 8. Theiler, J.: ‘Quantitative comparison of quadratic covariance-based anomalous change detectors’, Appl. Opt., 2008, 47, (28), pp. F12F26 (doi: 10.1364/AO.47.000F12).
    6. 6)
      • 22. Rosin, P., Ioannidis, E.: ‘Evaluation of global image thresholding for change detection’, Pattern Recognit. Lett., 2003, 24, (14), pp. 23452356 (doi: 10.1016/S0167-8655(03)00060-6).
    7. 7)
      • 3. Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: ‘Moving object detection in spatial domain using background removal techniques – state-of-art’, Recent Patents Comput. Sci., 2008, 1, (1), pp. 3254 (doi: 10.2174/1874479610801010032).
    8. 8)
      • 15. Vujović, I., Šoda, J., Kuzmanić, I.: ‘Cutting-edge mathematical tools in processing and analysis of signals in marine and navy’, Trans. Marit. Sci., 2012, 1, (1), pp. 3548 (doi: 10.7225/toms.v01.n01.005).
    9. 9)
      • 19. Donoho, D.L., Johnstone, I.M.: ‘Adapting to unknown smoothness via wavelet shrinkage’, J. Am. Stat. Assoc., 1995, 90, (432), pp. 12001224 (doi: 10.1080/01621459.1995.10476626).
    10. 10)
      • 5. Panda, D.K.: ‘Motion detection, object classification and tracking for visual surveillance application’. MSc Thesis, National Institute of Technology Rourkela, Odisha, India, 2012.
    11. 11)
      • 1. Grosbois, R.: ‘Image security and processing in the JPEG 2000 compressed domain’. PhD thesis, Université Paris, 2003.
    12. 12)
      • 11. Tolba, M.F., Bahgat, S.F., Al-Berry, M.N.: ‘A fast and reliable memory-based frame-differencing technique for moving object detection’. Proc. Book of the 14th Int. Conf. Computer: Theory and Applications, Alexandria, Egypt, September 2004.
    13. 13)
      • 4. Lazarevic, N.: ‘Background modelling and performance metrics for visual surveillance’. PhD thesis, Kingston University, 2011.
    14. 14)
      • 16. Vetterli, M., Kovačević, J.: ‘Wavelets and subband coding’ (Prentice-Hall, 1995).
    15. 15)
      • 21. Otsu, N.: ‘A threshold selection method from Gray-Level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266 (doi: 10.1109/TSMC.1979.4310076).
    16. 16)
      • 6. Porter, R., Fraser, A.M., Hush, D.: ‘Wide-area motion imagery’, IEEE Signal Process. Mag., 2010, 27, (5), pp. 5665 (doi: 10.1109/MSP.2010.937396).
    17. 17)
      • 7. Stauffer, C., Grimson, W.E.L.: ‘Adaptive background mixture models for real-time tracking’. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, Ft. Collins, USA, June 1999, vol. 2, pp. 246252.
    18. 18)
      • 9. Porter, R., Harvey, N., Theiler, J.: ‘A change detection approach to moving object detection in low fame-rate video’. Proc. Book of SPIE, Orlando, USA, 2009, pp. 73410S(8).
    19. 19)
      • 14. Christoper, H., Walnut, D.F.: ‘Fundamental papers in wavelet theory’ (Princeton University Press, 2006).
    20. 20)
      • 17. Mallat, S.: ‘A wavelet tour of signal processing’ (Academic Press, 2009).
    21. 21)
      • 10. IEEE Workshop on Change Detection, Providence, available at: http://www.wordpress-jodoin.dmi.usherb.ca/, 16 June 2012.
    22. 22)
      • 20. Sardy, S.: ‘Minimax threshold for denoising somplex signals with Waveshrink’, IEEE Trans. Signal Process., 2000, 48, (4), pp. 10231028 (doi: 10.1109/78.827536).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2013.0169
Loading

Related content

content/journals/10.1049/iet-ipr.2013.0169
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address