access icon free AnnularCut: a graph-cut design for left ventricle segmentation from magnetic resonance images

Clinician-friendly methods for cardiac image segmentation in clinical practice remain a tough challenge. Larger standard deviation in segmentation accuracy may be expected for automatic methods when the input dataset is varied; also at some instances the radiologists find them hard in case any correction is desired. In this context, this study presents a semi-automatic algorithm that uses anisotropic diffusion for smoothing the image and enhancing the edges followed by a new graph-cut method, ‘AnnularCut’, for three-dimensional left ventricle (LV) segmentation from some selected slices. Unlike the conventional cellular automata, where the performance depends solely on the image features, this method simultaneously considers the minimal energy between two adjacent regions thus mitigating the convergence problem. The two main contributions in this study can be summarised as (i) a dynamic cellular automation approach to integrate the minimal energy between two distinct labels, and (ii) generation of missing contours of the subject from the selected slices using a level set method to construct the volumetric LV. Both qualitative and quantitative evaluation performed on publicly available databases reflect the potential of the proposed method.

Inspec keywords: convergence; biomedical MRI; medical image processing; image segmentation; cellular automata; set theory; image enhancement; graph theory

Other keywords: graph-cut design; quantitative evaluation; annular cut; dynamic cellular automation approach; level set method; standard deviation; semi-automatic algorithm; image features; edge enhancement; left ventricle segmentation; MRI; qualitative evaluation; anisotropic diffusion; clinical practice; convergence problem; magnetic resonance images; image smoothing; cardiac image segmentation; three-dimensional LV segmentation; volumetric LV; automatic methods

Subjects: Optical, image and video signal processing; Computer vision and image processing techniques; Medical magnetic resonance imaging and spectroscopy; Automata theory; Combinatorial mathematics; Combinatorial mathematics; Biology and medical computing; Patient diagnostic methods and instrumentation; Algebra, set theory, and graph theory; Biomedical magnetic resonance imaging and spectroscopy

References

    1. 1)
      • 18. Michael, K., Andrew, W., Demetri, T.: ‘Snakes: Active contour models’, Int. J. Comput. Vis., 1988, 11, pp. 321331.
    2. 2)
      • 27. Yang, W., Cai, J., Zheng, J., Luo, J.: ‘User friendly interactive user segmentation through unified combinatorial user inputs’, IEEE Trans. Image Process., 2010, 19, pp. 24702479 (doi: 10.1109/TIP.2010.2048611).
    3. 3)
      • 14. Qazi, A., Kim, J., Pekar, V.: ‘Probabilistic refinement of model-based segmentation: application to radiation therapy planning of the head and neck’. Proc. Medical Imaging and Augmented Reality, 2010 (LNCS, 6326), pp. 403410.
    4. 4)
      • 32. Andreopoulos, A., Tsotsos, J.: ‘Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI’, Med. Imag. Anal., 2008, 12, pp. 335357 (doi: 10.1016/j.media.2007.12.003).
    5. 5)
      • 37. Hae-Yeoun, L., Codella, N., Cham, M., Weinsaft, J., Wang, Y.: ‘Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI’, IEEE Trans. Biomed. Eng., 2010, 57, pp. 905913 (doi: 10.1109/TBME.2009.2014545).
    6. 6)
      • 41. Xing, Z., Tian, J., Kexin, D., Yongfang, W., Xiuli, L.: ‘Automatic liver segmentation using a statistical shape model with optimal surface detection’, IEEE Trans. Biomed. Eng., 2010, 57, pp. 26222626 (doi: 10.1109/TBME.2010.2056369).
    7. 7)
      • 3. Ben Ayed, I., Li, S., Ross, I.: ‘Embedding overlap priors in variational left ventricle tracking’, IEEE Trans. Med. Imaging, 2009, 28, pp. 19021913 (doi: 10.1109/TMI.2009.2022087).
    8. 8)
      • 17. Eric, M., William, A.B.: ‘Intelligent scissors for image composition’. Technical report, Brigham Young University, 1995, vol. 10.
    9. 9)
      • 43. Ayed, I., Punithakumar, K., Li, S., Islam, A.: ‘Left ventricle segmentation via graph cut distribution’. MICCAI Grand Challenge 2009, 2009, pp. 901909.
    10. 10)
      • 10. Cuadra, M., Craene, M., Duay, V., Macq, B., Pollo, C., Thiran, J.: ‘Dense deformation field estimation for atlas-based segmentation of pathological MR brain images’, Comput. Methods Program. Biomed., 2006, 84, pp. 6675 (doi: 10.1016/j.cmpb.2006.08.003).
    11. 11)
      • 24. Grady, L.: ‘Random walks for image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, pp. 17681783 (doi: 10.1109/TPAMI.2006.233).
    12. 12)
      • 26. Black, M.J., Sapiro, G., Marimont, D., Heeger, D., et al: ‘Robust anisotropic diffusion’, IEEE Trans. mage Process., 1998, 7, pp. 421432 (doi: 10.1109/83.661192).
    13. 13)
      • 29. Domany, E., Kinzel, W.: ‘Equivalence of cellular automata to ising models and directed percolation’, Phys. Rev. Lett., 1984, 53, pp. 311314 (doi: 10.1103/PhysRevLett.53.311).
    14. 14)
      • 33. MICCAI 2011 Grand Challenge, available at: http://www.cardiacatlas.org/web/guest/stacom2011.
    15. 15)
      • 11. Vincent, L., Soille, P.: ‘Watersheds in digital spaces: an efficient algorithm based on immersion simulation’, IEEE Trans. Pattern Anal. Mach. Intel., 1991, 13, pp. 583598 (doi: 10.1109/34.87344).
    16. 16)
      • 8. Chan, T., Vese, L.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277 (doi: 10.1109/83.902291).
    17. 17)
      • 44. Volonte, F., Pugin, F., Bucher, P., Sugimoto, M., Ratib, O., Morel, P.: ‘Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion’, J. Hep. Pancr. Sci., 2011, 18, pp. 506509 (doi: 10.1007/s00534-011-0385-6).
    18. 18)
      • 20. Shoudong, H., Wenbing, T., Desheng, W., Xue-Cheng, T., Xianglin, W.: ‘Image segmentation based on GrabCut framework integrating multiscale nonlinear structure tensor’, IEEE Trans. Image Process., 2009, 18, pp. 22892302 (doi: 10.1109/TIP.2009.2025560).
    19. 19)
      • 28. Vezhnevets, V., Konouchine, V.: ‘Grow Cut – interactive multi-label N-D image segmentation’. Proc. Graphicon, 2005, pp. 150156.
    20. 20)
      • 25. Rosin, P.L.: ‘Training cellular automata for image processing’, IEEE Trans. Image Process., 2006, 15, pp. 311314 (doi: 10.1109/TIP.2006.877040).
    21. 21)
      • 22. Sinop, A.K., Grady, L.: ‘A seeded image segmentation framework unifying Graph Cuts and Random Walker which yields a new algorithm’. Proc. Int. Conf. Computer Vision, 2007.
    22. 22)
      • 31. Jaechul, K., Kristen, G.: ‘Asymmetric region-to-image matching for comparing images with generic object categories’. Proc. Computer Vision and Pattern Recognition, 2010.
    23. 23)
      • 9. Davatzikos, C., Vaillant, M., Resnick, S., Prince, J., Letovsky, S., Bryan, R.: ‘A computerized method for morphological analysis of the corpus callosum’, J. Comput. Assist. Tomogr., 1996, 20, pp. 8897 (doi: 10.1097/00004728-199601000-00017).
    24. 24)
      • 12. Sijbers, J., Scheunders, P., Verhoye, M., Linden, A., Dyck, D.: ‘Watershed-based segmentation of 3D MR data for volume quantization’, Magn. Reson. Imaging, 1997, 15, pp. 679688 (doi: 10.1016/S0730-725X(97)00033-7).
    25. 25)
      • 38. Yun, Z., Papademetris, X., Sinusas, A., Duncan, J.: ‘Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model’, IEEE Trans. Med. Imaging, 2010, 29, pp. 669687 (doi: 10.1109/TMI.2009.2031063).
    26. 26)
      • 15. MICCAI 2009 Grand Challenge, available at: http://www.smial.sri.utoronto.ca=LV/Challenge.
    27. 27)
      • 1. Heimann, T., Ginneken, B., Styner, M.A., et al: ‘Comparison and evaluation of methods for liver segmentation from CT datasets’, IEEE Trans. Med. Imaging, 2009, 28, pp. 12511265 (doi: 10.1109/TMI.2009.2013851).
    28. 28)
      • 40. Peng, B., Zhang, L., Zhang, D.: ‘Automatic image segmentation by dynamic region merging’, IEEE Trans. Image Process., 2011, 20, pp. 35923605 (doi: 10.1109/TIP.2011.2157512).
    29. 29)
      • 19. Tong, Z., Nehorai, A., Porat, B.: ‘K-means clustering-based data detection and symbol-timing recovery for burst-mode optical receiver’, IEEE Trans. Commun., 2006, 54, pp. 14921501 (doi: 10.1109/TCOMM.2006.878840).
    30. 30)
      • 39. Abouzar, E., Athanasios, K., Amin, K., Nassir, N.: ‘Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI’, Med. Image Anal., 2013, 17, pp. 236253 (doi: 10.1016/j.media.2012.10.005).
    31. 31)
      • 7. Gonzalez, R., Deschamps, T., Idica, R., Malladi, R., Solorzano, C.: ‘Automatic segmentation of histological structures in mammary gland tissue sections’, Lawrence Berkeley National Laboratory, 2004, 9, pp. 444453.
    32. 32)
      • 42. Carneiro, G., Nascimento, J., Freitas, A.: ‘The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods’, IEEE Trans. Image Process., 2012, 21, pp. 968982 (doi: 10.1109/TIP.2011.2169273).
    33. 33)
      • 21. Jianbo, S., Malik, J.: ‘Normalized cuts and image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 888905 (doi: 10.1109/34.868688).
    34. 34)
      • 6. Adalsteinsson, D., Sethian, J.: ‘A fast level set method for propagating interfaces’, J. Comput. Phys., 1995, 118, pp. 169277 (doi: 10.1006/jcph.1995.1098).
    35. 35)
      • 13. Frangi, A., Niessen, W., Viergever, M.: ‘Three-dimensional modeling for functional analysis of cardiac images, a review’, IEEE Trans. Med. Imaging, 2001, 20, pp. 25 (doi: 10.1109/42.906421).
    36. 36)
      • 35. Pednekar, A., Kurkure, U., Muthupillai, R., Flamm, S., Kakadiaris, I.: ‘Automated left ventricular segmentation in cardiac MRI’, IEEE Trans. Biomed. Eng., 2006, 53, pp. 14251428 (doi: 10.1109/TBME.2006.873684).
    37. 37)
      • 5. Paragios, N.: ‘A level set approach for shape-driven segmentation and tracking of the left ventricle’, IEEE Trans. Med. Imaging, 2003, 22, pp. 773776 (doi: 10.1109/TMI.2003.814785).
    38. 38)
      • 34. Nazif, A., Levine, M.: ‘Low level image segmentation: an expert system’, IEEE Trans. Pattern Anal. Mach. Intell., 1984, 6, pp. 558577.
    39. 39)
      • 23. Yuri, Y.B., Marie-Pierre, J.: ‘Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images’. Proc. Int. Conf. Computer Vision, 2001, vol. I, no 12, pp. 105110.
    40. 40)
      • 4. Li, C., Xu, C., Gui, C., Fox, M.: ‘Level set formulation without re-initialization: a new variational formulation’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 430436.
    41. 41)
      • 2. Caroline, P., Jean-Nicolas, D.: ‘A review of segmentation methods in short axis cardiac MR images’, Med. Imag Anal., 2011, 15, pp. 169184 (doi: 10.1016/j.media.2010.12.004).
    42. 42)
      • 30. Bellman, R.: ‘Dynamic Programming’ (Princeton Univ. Press, Princeton, NJ, 1957).
    43. 43)
      • 16. Carsten, R., Vladimir, K., Andrew, B.: ‘GrabCut: interactive foreground extraction using iterated graph cuts’. Proc. ACM SIGGRAPH, 2004.
    44. 44)
      • 36. Lynch, M., Ghita, O., Whelan, P.F.: ‘Segmentation of the left ventricle of the heart in 3-D + t MRI data using an optimized nonrigid temporal model’, IEEE Trans. Med. Imaging, 2008, 27, pp. 195203 (doi: 10.1109/TMI.2007.904681).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2013.0088
Loading

Related content

content/journals/10.1049/iet-ipr.2013.0088
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading