http://iet.metastore.ingenta.com
1887

access icon openaccess Filtering of mixed Gaussian and impulsive noise using morphological contrast detectors

  • PDF
    1.234908103942871MB
  • HTML
    235.99609375Kb
  • XML
    171.189453125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-ipr/8/3/IET-IPR.2012.0615.html;jsessionid=2sp5cgujv2j4v.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-ipr.2012.0615&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Richard, A.P.: ‘A new algorithm for image noise reduction using mathematical morphology’, IEEE Trans. Image Process., 1995, 4, (5), pp. 554568 (doi: 10.1109/83.382491).
    2. 2)
      • 2. Serra, J.: ‘Mathematical morphology’ (London, Academic, 1982, vol. I).
    3. 3)
      • 3. Serra, J. (Ed.): ‘Image analysis and mathematical morphology’ in ‘Theoretical Advances’ (San Diego, Academic Press, 1988, vol. 2).
    4. 4)
      • 4. Ito, Y., Sato, T., Yamashita, N., Jianming, L., Sekiya, H., Yahagi, T.: ‘Impulse noise detector using mathematical morphology’. In: Proc. IEEE Int. Symp. on Circuits and Systems, 2006, pp. 42614265.
    5. 5)
      • 5. Lal, S., Chandra, M., Upadhyay, G.K.: ‘Noise removal algorithm for images corrupted by additive Gaussian noise’, Int. J. Recent Trends Eng., 2009, 2, (1), pp. 199206.
    6. 6)
      • 6. Alok, S., Umesh, G., Chakresh, K., Ghanendra, K.: ‘An efficient morphological salt-and-pepper noise detector’, Int. J. Adv. Netw. Appl., 2011, 2, (5), pp. 873875.
    7. 7)
      • 7. Corner, B.R., Narayanan, R.M., Reichenbach, S.E.: ‘Noise estimation in remote sensing imagery using data masking’, Int. J. Remote Sens., 2003, 24, pp. 689702 (doi: 10.1080/01431160210164271).
    8. 8)
      • 8. Gravel, P., Beaudoin, G., De Guise, J.A.: ‘A method for modeling noise in medical images’, IEEE Trans. Med. Imaging, 2004, 23, (10), pp. 122132 (doi: 10.1109/TMI.2004.832656).
    9. 9)
      • 9. Aizenberg, I.: ‘Effective impulse detector based on rank-order criteria’, IEEE Signal Process. Lett., 2004, 11, (3), pp. 363366 (doi: 10.1109/LSP.2003.822925).
    10. 10)
      • 10. Petrovic’, N., Crnojevic’, V.: ‘Impulse noise detection based on robust statistics and genetic programming’. In: Advanced Concepts for Intelligent Vision Systems 2005. Lecture Notes in Computer Science, Berlin, 2005, vol. 3708, pp. 643649.
    11. 11)
      • 11. Radhika, V., Padma, V.G.: ‘Performance of impulse noise detection methods in remote sensing images’, Int. J. Eng. Sci. Technol., 2010, 2, (9), pp. 45264532.
    12. 12)
      • 12. Chih-Lung, L., Chih-Wei, K., Chih-Chin, L., Ming-Dar, T., Yuan-Chang, C., Hsu-Yung, C.: ‘A novel approach to fast noise reduction of infrared image’, Infrared Phys. Technol., 2011, 54, (1), pp. 19 (doi: 10.1016/j.infrared.2010.09.007).
    13. 13)
      • 13. Vijaykumar, V.R., Vanathi, P.T., Kanagasabapathy, P.: ‘Fast and efficient algorithm to remove Gaussian noise in digital images’, IAENG Int. J. Comput. Sci., 2010, 37, (1), pp. 7884.
    14. 14)
      • 14. Pyka, K.: ‘The use of wavelets for noise detection in the image taken by the analog and digital photogrammetric cameras’. The Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII-B1, 2008.
    15. 15)
      • 15. Sudha, S., Suresh, G.R., Sukanesh, R.: ‘Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance’, Int. J. Comput. Theory Eng., 2009, 1, (1), pp.1.
    16. 16)
      • 16. Tasmaz, H., Ercelebi, E.: ‘Image enhancement via space-adaptive lifting scheme exploiting subband dependency’, Digit. Signal Process., 2010, 20, (6), pp. 16451655 (doi: 10.1016/j.dsp.2010.03.006).
    17. 17)
      • 17. Church, J.C., Chen, Y., Rice, S.V.: ‘A spatial median filter for noise removal in digital images’. In IEEE Southeastcon, 2008, SECON, pp. 618623.
    18. 18)
      • 18. Schulte, S., De Witte, V., Kerre, E.E.: ‘A fuzzy noise reduction method for color images’, IEEE Trans. Image Process., 2007, 16, (5), pp. 142536 (doi: 10.1109/TIP.2007.891807).
    19. 19)
      • 19. Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: ‘Automatic estimation and removal of noise from a single image’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (2), pp. 299314 (doi: 10.1109/TPAMI.2007.1176).
    20. 20)
      • 20. Terol-Villalobos, I.R.: ‘Morphological connected contrast mappings based on top-hat criteria: a multiscale contrast approach’, Opt. Eng., 2004, 43, (7), pp. 15771595 (doi: 10.1117/1.1757456).
    21. 21)
      • 21. Rivest, J.F., Soille, P., Beucher, S.: ‘Morphological gradients’, J. Electron. Imaging, 1993, 2, (4), pp. 326336 (doi: 10.1117/12.159642).
    22. 22)
      • 22. Meyer, F., Serra, J.: ‘Activity mappings’, Signal Processing1989, 16, (4), pp. 303317 (doi: 10.1016/0165-1684(89)90028-5).
    23. 23)
      • 23. Vincent, L.: ‘Morphological grayscale reconstruction in image analysis: applications and efficient algorithms’, IEEE Trans. Image Process., 1993, 2, (2), pp. 176201 (doi: 10.1109/83.217222).
    24. 24)
      • 24. Beghdadi, A., Khellaf, A.: ‘A noise-filtering method using a local information measure’, IEEE Trans. Image Process., 1997, 6, (6), pp. 879882 (doi: 10.1109/83.585237).
    25. 25)
      • 25. Beucher, S.: ‘Numerical residues’. In:Mathematical Morphology and its Applications to Image Processing, Proc. ISMM'05, 2005, pp. 2332.
    26. 26)
      • 26. Maragos, P., Schafer, R.: ‘Morphological filters-part I: their set-theoretical analysis and relations to linear shift invariant filters’, IEEE Trans. Acoust. Speech Signal Process., 1987, 35, pp. 11531169 (doi: 10.1109/TASSP.1987.1165259).
    27. 27)
      • 27. Tschumperlé, D.: ‘Fast anisotropic smoothing of multi-valued images using curvature-preserving PDEs’, Int. J. Comput. Vis., 2006, 68, (1), pp. 6582 (doi: 10.1007/s11263-006-5631-z).
    28. 28)
      • 28. Portilla, J.: ‘Full blind denoising through noise covariance estimation using Gaussian scale mixtures in the wavelet domain’. In: Proc. IEEE Int. Conf. Image Proc., 2004, pp. 12171220.
    29. 29)
      • 29. Mendiola-Santibañez, J.D., Terol-Villalobos, I.R., Jiménez-Sánchez, A.R., Gallegos-Duarte, M., Rodriguez-Resendiz, J., Santillan, I.: ‘Application of morphological connected openings and levelings on magnetic resonance images of the brain’, Int. J. Imaging Syst. Technol., 2011, 21, pp. 336348 (doi: 10.1002/ima.20299).
    30. 30)
      • 30. Lerallut, R., Decencière, E., Meyer, F.: ‘Image filtering using morphological amoebas’, Image Vis. Comput., 2007, 25, (4), pp. 395404 (doi: 10.1016/j.imavis.2006.04.018).
    31. 31)
      • 31. Martin, D., Fowlkes, C., Tal, D., Malik, J.: ‘A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics’. In: Proc. IEEE Int. Conf. Computer Vision, 2001, 2, pp. 416423.
    32. 32)
      • 32. Heijmans, H.: ‘Morphological image operators’, in: Hawkes, P. (ed.): ‘Advances in electronics and electron physics’ (Academic Press, 1994).
    33. 33)
      • 33. Jiménez-Sánchez, A.R., Mendiola-Santibañez, J.D., Terol-Villalobos, I.R., et al: ‘Morphological background detection and enhancement of images with poor lighting’, IEEE Trans. Image Process., 2009, 18, (3), pp. 613623 (doi: 10.1109/TIP.2008.2010152).
    34. 34)
      • 34. Jiménez-Sánchez, A.R., Santillán, I., Rodriguez-Resendiz, J., Gonzalez-Gutierrez, C.A., Mendiola-Santibañez, J.D.: ‘Morphological contrast index based on the weber's law’, Int. J. Imaging Syst. Technol., 2012, 22, pp. 137144 (doi: 10.1002/ima.22014).
    35. 35)
      • 35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: ‘Image quality assessment: From error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612 (doi: 10.1109/TIP.2003.819861).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2012.0615
Loading

Related content

content/journals/10.1049/iet-ipr.2012.0615
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address