access icon free Low-bit depth-high-dynamic range image generation by blending differently exposed images

Recently, high-dynamic range (HDR) imaging has taken the centre stage because of the drawbacks of low-dynamic range imaging, namely detail losses in under- and over-exposed areas. In this study, the authors propose an algorithm for HDR image generation of a low-bit depth from two differently exposed images. For compatibility with conventional devices, HDR image generations of a large bit depth and bit depth compression are skipped. By using posterior probability-based labelling, luminance adjusting and adaptive blending, the authors directly blend two input images into one while preserving the global intensity order as well as enhancing its dynamic range. From the experiments on various test images, results confirm that the proposed method generates more natural HDR images than other state-of-the-art algorithms regardless of image properties.

Inspec keywords: image sensors; image enhancement; brightness; probability; data compression; image coding

Other keywords: image properties; posterior probability-based labelling; digital image sensors; low-bit depth-high-dynamic range image generation; global intensity preservation; low-dynamic range imaging; bit depth compression; luminance adjusting; image quality enhancement; adaptive blending; HDR image generation

Subjects: Other topics in statistics; Other topics in statistics; Image sensors; Computer vision and image processing techniques; Image and video coding

References

    1. 1)
      • 28. Qingxiong, Y., Kar-Han, T., Ahuja, N.: ‘Real-time O(1) bilateral filtering’. IEEE Conf. Computer Vision and Pattern Recognition, 2009.
    2. 2)
      • 14. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: ‘Adaptive logarithmic mapping for displaying high contrast scenes’. EUROGRAPHIC, Wiley Online Library, 2003.
    3. 3)
      • 27. Gill, P.E., Murray, W.: ‘Algorithms for the solution of the nonlinear least-squares problem’, SIAM J. Numer. Anal., 1978, 15, (5), pp. 977992 (doi: 10.1137/0715063).
    4. 4)
      • 3. Jha, R.K., Biswas, P.K., Chatterji, B.N.: ‘Contrast enhancement of dark images using stochastic resonance’, IET Image Process., 2012, 6, (3), pp. 230237 (doi: 10.1049/iet-ipr.2010.0392).
    5. 5)
      • 13. Larson, G.W., Rushmeier, H., Piatko, C.: ‘A visibility matching tone reproduction operator for high dynamic range scenes’, IEEE Trans. Vis. Comput. Graph., 1997, 3, (4), pp. 291306 (doi: 10.1109/2945.646233).
    6. 6)
      • 17. Mantiuk, R., Daly, S., Kerofsky, L.: ‘Display adaptive tone mapping’, ACM Trans. Graph., 2008, 27, (3), pp. 68 (doi: 10.1145/1360612.1360667).
    7. 7)
      • 16. Reinhard, E., Devlin, K.: ‘Dynamic range reduction inspired by photoreceptor physiology’, IEEE Trans. Vis. Comput. Graph., 2005, 11, (1), pp. 1324 (doi: 10.1109/TVCG.2005.9).
    8. 8)
      • 24. Sharma, M., Chaudhury, S., Lall, B.: ‘Parameterized variety for multi-view multi-exposure image synthesis and high dynamic range stereo reconstruction’. 3DTV-Conf. The True Vision – Capture, Transmission and Display of 3D Video (3DTV-CON), 2012.
    9. 9)
      • 8. Kim, Y.T.: ‘Contrast enhancement using brightness preserving bi-histogram equalization’, IEEE Trans. Consum. Electron., 1997, 43, (1), pp. 18 (doi: 10.1109/30.580378).
    10. 10)
      • 4. Wang, C., Peng, J., Ye, Z.: ‘Flattest histogram specification with accurate brightness preservation’, IET Image Process., 2008, 2, (5), pp. 249262 (doi: 10.1049/iet-ipr:20070198).
    11. 11)
      • 12. Tumblin, J., Rushmeier, H.: ‘Tone Reproduction for realistic images’, IEEE Comput. Graph. Appl., 1993, 13, (6), pp. 4248 (doi: 10.1109/38.252554).
    12. 12)
      • 7. Pardo, A., Sapiro, G.: ‘Visualization of high dynamic range images’, IEEE Trans. Image Process., 2003, 12, (6), pp. 639647 (doi: 10.1109/TIP.2003.812373).
    13. 13)
      • 11. Tsai, C.-M., Yeh, Z.-M.: ‘Contrast enhancement by automatic and parameter-free piecewise linear transformation for color images’, IEEE Trans. Consum. Electron., 2008, 54, (2), pp. 213219 (doi: 10.1109/TCE.2008.4560077).
    14. 14)
      • 15. Fattal, R., Lischinski, D., Werman, M.: ‘Gradient domain high dynamic range compression’, ACM Trans. Graph., 2002, 21, (3), pp. 249256 (doi: 10.1145/566654.566573).
    15. 15)
      • 2. Vonikakis, V., Andreadis, I., Gasteratos, A.: ‘Fast centre-surround contrast modification’, IET Image Process., 2008, 2, (1), pp. 1934 (doi: 10.1049/iet-ipr:20070012).
    16. 16)
      • 22. Goshtasby, A.A.: ‘Fusion of multi-exposure images’, Image Vis. Comput., 2005, 23, (6), pp. 611618 (doi: 10.1016/j.imavis.2005.02.004).
    17. 17)
      • 5. DiCarlo, J., Wandell, B.: ‘Rendering high dynamic range images’. The SPIE Electronic Imaging Conf., 2000.
    18. 18)
      • 25. Li, S.Z.: ‘Markov random field modeling in image analysis’ (Springer, 2009).
    19. 19)
      • 29. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: ‘HDR-Vdp-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions’, ACM Trans. Graph., 2011, 30, (4), p. 40 (doi: 10.1145/2010324.1964935).
    20. 20)
      • 23. Ning, S., Mansour, H., Ward, R.: ‘HDR image construction from multi-exposed stereo LDR images’. IEEE Int. Conf. Image Processing, 2010.
    21. 21)
      • 18. Krawczyk, G., Myszkowski, K., Seidel, H.P.: ‘Lightness perception in tone reproduction for high dynamic range images’. Computer Graphics Forum, Wiley Online Library, 2005.
    22. 22)
      • 10. Im, J., Jeon, J., Hayes, M.H., Paik, J.: ‘Single image-based ghost-free high hynamic range imaging using local histogram stretching and spatially-adaptive denoising’, IEEE Trans. Consum. Electron., 2011, 57, (4), pp. 14781484 (doi: 10.1109/TCE.2011.6131114).
    23. 23)
      • 26. Felzenszwalb, P.F., Huttenlocher, D.P.: ‘Efficient belief propagation for early vision’, Int. J. Comput. Vis., 2006, 70, (1), pp. 4154 (doi: 10.1007/s11263-006-7899-4).
    24. 24)
      • 21. Jinno, T., Okuda, M.: ‘Multiple exposure fusion for high dynamic range image acquisition’, IEEE Trans. Image Process., 2012, 21, (1), pp. 358365 (doi: 10.1109/TIP.2011.2160953).
    25. 25)
      • 1. Mingli, S., Dacheng, T., Chun, C., Jiajun, B., Jiebo, L., Chengqi, Z.: ‘Probabilistic exposure fusion’, IEEE Trans. Image Process., 2012, 21, (1), pp. 341357 (doi: 10.1109/TIP.2011.2157514).
    26. 26)
      • 19. Gelfand, N., Adams, A., Park, S.H., Pulli, K.: ‘Multi-exposure imaging on mobile devices’. Int. Conf. Multimedia, 2010.
    27. 27)
      • 6. Mannami, H., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: ‘High dynamic range camera using reflective liquid crystal’. IEEE Int. Conf. Computer Vision, 2007.
    28. 28)
      • 20. Mertens, T., Kautz, J., Van Reeth, F.: ‘Exposure fusion’. Pacific Conf. Computer Graphics and Applications, 2007.
    29. 29)
      • 9. Menotti, D., Najman, L., Facon, J., de Araujo, A.A.: ‘Multi-histogram equalization methods for contrast enhancement and brightness preserving’, IEEE Trans. Consum. Electron., 2007, 53, (3), pp. 11861194 (doi: 10.1109/TCE.2007.4341603).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2012.0614
Loading

Related content

content/journals/10.1049/iet-ipr.2012.0614
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading