http://iet.metastore.ingenta.com
1887

Non-parametric modified histogram equalisation for contrast enhancement

Non-parametric modified histogram equalisation for contrast enhancement

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Histogram equalisation has been a much sought-after technique for improving the contrast of an image, which however leads to an over enhancement of the image, giving it an unnatural and degraded appearance. In this framework, a generalised contrast enhancement algorithm is proposed which is independent of parameter setting for a given dynamic range of the input image. The algorithm uses the modified histogram for spatial transformation on grey scale to render a better quality image irrespective of the image type. Added to this, two variants of the proposed methodology are presented, one of which preserves the brightness of original image while the other variant increases the image brightness adaptively, giving it a better look. Qualitative and quantitative assessments like degree of entropy un-preservation, edge-based contrast measure and structure similarity index measures are then applied to the 500 image data set for comparing the proposed algorithm with several existing state-of-the-art algorithms. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several algorithms.

References

    1. 1)
      • 1. Gonzalez, R.C., Woods, R.E.: ‘Digital Image Processing’, (Pearson Prentice-hall, 2009, 3rd edn.).
    2. 2)
      • 2. Chen, S.-D., Rahman Ramli, A.: ‘Preserving brightness in histogram equalization based contrast enhancement techniques,’ Digital Signal Process., 2004, 14, pp. 413428 (doi: 10.1016/j.dsp.2004.04.001).
    3. 3)
      • 3. Stephen, M., Pizer, E., Philip Amburn, John, Austin, D., et al: ‘Adaptive histogram equalization and its variations,’ Computer Vision, Graphics, and Image Processing, 1987, 49, (3), pp. 355368, ISSN 0734-189X.
    4. 4)
      • 4. Celik, T., Tjahjadi, T.: ‘Automatic image equalization and contrast enhancement using gaussian mixture modeling,’ IEEE Trans. Image Process., 2012, 21, pp. 145156 (doi: 10.1109/TIP.2011.2162419).
    5. 5)
      • 5. Chen Hee, Ooi, Kong, N.S.P., Ibrahim, H.: ‘Bi-histogram equalization with a plateau limit for digital image enhancement,’ IEEE Trans. Consumer Electron., 2009, 55, pp. 20722080 (doi: 10.1109/TCE.2009.5373771).
    6. 6)
      • 6. Yeong-Taeg, Kim: ‘Contrast enhancement using brightness preserving bi-histogram equalization,’ IEEE Trans. Consumer Electron., 1997, 43, pp. 18 (doi: 10.1109/30.580378).
    7. 7)
      • 7. Yu, Wang, Qian, Chen, Baeomin, Zhang: ‘Image enhancement based on equal area dualistic sub-image histogram equalization method,’ IEEE Trans. Consumer Electron., 1999, 45, pp. 6875 (doi: 10.1109/30.754419).
    8. 8)
      • 8. Soong-Der, C., Ramli, A.R.: ‘Minimum mean brightness error bi-histogram equalization in contrast enhancement,’ IEEE Trans. Consumer Electron., 2003, 49, pp. 13101319 (doi: 10.1109/TCE.2003.1261234).
    9. 9)
      • 9. Soong-Der, C., Ramli, A.R.: ‘Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation,’ IEEE Trans. Consumer Electron., 2003, 49, pp. 13011309 (doi: 10.1109/TCE.2003.1261233).
    10. 10)
      • 10. Sim, K.S., Tso, C.P., Tan, Y.Y.: ‘Recursive sub-image histogram equalization applied to gray scale images,’ Pattern Recognit. Lett., 2007, 28, (10), pp. 12091221, ISSN 0167-8655 (doi: 10.1016/j.patrec.2007.02.003).
    11. 11)
      • 11. Chao, W., Zhongfu, Y.: ‘Brightness preserving histogram equalization with maximum entropy: a variational perspective,’ IEEE Trans. Consumer Electron., 2005, 51, pp. 13261334 (doi: 10.1109/TCE.2005.1561863).
    12. 12)
      • 12. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., Oksam, Chae: ‘A dynamic histogram equalization for image contrast enhancement,’ IEEE Trans. Consumer Electron., 2007, 53, pp. 593600 (doi: 10.1109/TCE.2007.381734).
    13. 13)
      • 13. Ibrahim, H., Kong, N.S.P.: ‘Brightness preserving dynamic histogram equalization for image contrast enhancement,’ IEEE Trans. Consumer Electron., 2007, 53, pp. 17521758 (doi: 10.1109/TCE.2007.4429280).
    14. 14)
      • 14. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: ‘Brightness preserving dynamic fuzzy histogram equalization,’ IEEE Trans. Consumer Electron., 2010, 56, pp. 24752480 (doi: 10.1109/TCE.2010.5681130).
    15. 15)
      • 15. Wang, C., Peng, J., Ye, Z.: ‘Flattest histogram specification with accurate brightness preservation,’ IET Image Process., 2008, 2, pp. 249262 (doi: 10.1049/iet-ipr:20070198).
    16. 16)
      • 16. Coltuc, D., Bolon, P., Chassery, J.-M.: ‘Exact histogram specification,’ IEEE Trans. Image Process., 2006, 15, pp. 11431152 (doi: 10.1109/TIP.2005.864170).
    17. 17)
      • 17. Arici, T., Dikbas, S., Altunbasak, Y.: ‘A histogram modification framework and its application for image contrast enhancement,’ IEEE Trans. Image Process., 2009, 18, pp. 19211935 (doi: 10.1109/TIP.2009.2021548).
    18. 18)
      • 18. Hashemi, S., Soheila, Kiani, Navid, Noroozi, Mohsen Ebrahimi, Moghaddam: ‘An image contrast enhancement method based on genetic algorithm,’ Pattern Recognit. Lett., 2010, 31, pp. 18161824 (doi: 10.1016/j.patrec.2009.12.006).
    19. 19)
      • 19. Seungjoon, Yang, Jae Hwan, Oh, Yungfun, Park: ‘Contrast enhancement using histogram equalization with bin underflow and bin overflow,’ Proc. 2003 Int. Conf. Image Processing, 2003, (ICIP 2003), 1, 2003, pp. I-881-4.
    20. 20)
      • 20. Qing, W., Ward, R.K.: ‘Fast image/video contrast enhancement based on weighted thresholded histogram equalization,’ IEEE Trans. Consumer Electron., 2007, 53, pp. 757764 (doi: 10.1109/TCE.2007.381756).
    21. 21)
      • 21. Agaian, S.S., Panetta, K., Grigoryan, A.M.: ‘Transform-based image enhancement algorithms with performance measure,’ IEEE Trans. Image Process., 2001, 10, pp. 367382 (doi: 10.1109/83.908502).
    22. 22)
      • 22. Agaian, S.S., Silver, B., Panetta, K.A.: ‘Transform coefficient histogram-based image enhancement algorithms using contrast entropy,’ IEEE Trans. Image Process., 2007, 16, pp. 741758 (doi: 10.1109/TIP.2006.888338).
    23. 23)
      • 23. Ibrahim, H., Kong, N.S.P.: ‘Image sharpening using sub-regions histogram equalization,’ IEEE Trans. Consumer Electron., 2009, 55, pp. 891895 (doi: 10.1109/TCE.2009.5174471).
    24. 24)
      • 24. Cheng, H.D., Xu, H.: ‘A novel fuzzy logic approach to contrast enhancement,’ Pattern Recognit., 2000, 33, pp. 809819 (doi: 10.1016/S0031-3203(99)00096-5).
    25. 25)
      • 25. Peng, R.: ‘Noise-enhanced and human visual system-driven image processing: algorithms and performance limits,’ PhD thesis, Electrical Engineering and Computer Science, Syracuse University, 2011.
    26. 26)
      • 26. http://r0k.us/graphics/kodak/, accessed January 2012.
    27. 27)
      • 27. Pablo, Arbelaez, Michael, Maire, Charless, Fowlkes, Jitendra, Malik: ‘Contour detection and hierarchical image segmentation,’ IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, pp. 898916 (doi: 10.1109/TPAMI.2010.161).
    28. 28)
      • 28. http://sipi.usc.edu/database/, accessed January 2012.
    29. 29)
      • 29. Kwok, N.M., Xiuping, Jia, Wang, D., Chen, S.Y., Gu, Fang, Ha, Q.P.: ‘Visual impact enhancement via image histogram smoothing and continuous intensity relocation’, Comput. Electr. Eng., 2011, 37, (5), pp. 681694, ISSN 0045-7906 (doi: 10.1016/j.compeleceng.2011.08.002).
    30. 30)
      • 30. Shannon, C.E.: ‘A mathematical theory of communication,’ Bell Syst. Technical J., 1948, 27, pp. 379423, 623–656 (doi: 10.1002/j.1538-7305.1948.tb01338.x).
    31. 31)
      • 31. Beghdadi, A., Le Negrate, A.: ‘Contrast enhancement technique based on local detection of edges,’ Comput. Vis. Graphics Image Process., 1989, 46, pp. 162174 (doi: 10.1016/0734-189X(89)90166-7).
    32. 32)
      • 32. Zhou, Wang, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: ‘Image quality assessment: from error visibility to structural similarity,’ IEEE Trans. Image Process., 2004, 13, (4), pp. 600612 (doi: 10.1109/TIP.2003.819861).
    33. 33)
      • 33. http://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/, accessed February 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2012.0507
Loading

Related content

content/journals/10.1049/iet-ipr.2012.0507
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address