access icon free Automatic and quick blood vessels extraction algorithm in retinal images

There is an everyday increase of retinal images in different application such as human recognition and diagnosing the eye diseases. Therefore, the need for an automatic method which can recognise the eye parts of retinal images as eye features is unavoidable. This paper offers an automatic and quick morphological-based blood vessel extraction algorithm from the coloured retinal images using Curvelet transform (CT) and principle component analysis (PCA) is proposed. In this algorithm, by estimating the illumination of background and the distribution of contrast in the retinal images, the brightness of images is considerably uniformed. Furthermore, CT is used to enhance the contrast of retinal images by highlighting the edge images in various, scales and directions. We use an improved morphology function introduced with multi-directional structure elements, to extract the blood vessels from retinal images. Connected component analysis and an adaptive filter are used to refine appeared frills with the size of smaller than arterioles in images. The proposed algorithm is evaluated on available images of the DRIVE database and accuracy rate of 94.58% for the blood vessel extraction is obtained. The obtained results show efficiency of the proposed algorithm in comparison with the presented approaches in the literature.

Inspec keywords: adaptive filters; retinal recognition; principal component analysis

Other keywords: illumination; automatic and quick blood vessels extraction algorithm; diagnosis; coloured retinal images; human recognition; damage detection; eye diseases; connected component analysis; adaptive filter; principle component analysis; morphological-based blood vessels extraction algorithm; Curvelet transform

Subjects: Computer vision and image processing techniques; Other topics in statistics; Image recognition; Other topics in statistics

References

    1. 1)
      • 5. Shahbeig, S., Pourghassem, H.: ‘Fast and automatic algorithm for optic disc extraction in retinal images using principle-component-analysis-based preprocessing and curvelet transform’, Journal of the Optical Society of America A-Optics Image Science and Vision, 2013, 30, (1), pp. 1321 (doi: 10.1364/JOSAA.30.000013).
    2. 2)
      • 6. Feng, P., Pan, Y., Wei, B., Jin, W., Mi, D.: ‘Enhancing retinal image by the Contourlet transform’, Pattern Recognition Letters, 2007, 28, (4), pp. 516522 (doi: 10.1016/j.patrec.2006.09.007).
    3. 3)
      • 19. Benadict Raja, J., Ravichandran, C.G.: ‘Blood vessel segmentation for high resolution retinal images’, Int. J. Comput. Sci., 2011, 8, (2), pp. 389393.
    4. 4)
      • 13. Zhao, Zh.B., Yuan, J.Sh., Gao, Q., Kong, Y.H.: ‘Wavelet image de-noising method based on noise standard deviation estimation’. Proc. IEEE Int. Conf. on Wavelet Analysis and Patt. Rec., 2007, vol. 4, pp. 19101914.
    5. 5)
      • 2. Supot, S., Thanapong, Ch., Chuchart, P., Manas, S.: ‘Automatic segmentation of blood vessels in retinal image based on fuzzy Kmedian clustering’. Proc. IEEE Int. Conf. on Integration Technology, 2007, pp. 584588.
    6. 6)
      • 4. Joshi, G.D., Sivaswamy, J.: ‘Colour retinal image enhancement based on domain knowledge’. 6th Indian Conf. on Computer Vision, Graphics & Image Processing, 2008, pp. 591598.
    7. 7)
      • 7. Candes, E.J., Demanet, L., Donoho, D.L., Ying, L.: ‘Fast discrete Curvelet transforms’, SIAM Multiscale Model. Simul, 2006, 3, pp. 861899 (doi: 10.1137/05064182X).
    8. 8)
      • 20. Ramlugun, G.S., Nagarajan, V.K., Chakraborty, Ch.: ‘Small retinal vessels extraction towards proliferative diabetic retinopathy screening’, Expert Syst. Appl., 2012, 39, (1), pp. 11411146 (doi: 10.1016/j.eswa.2011.07.115).
    9. 9)
      • 11. Li, H., Chutatape, O.: ‘A model-based approach for automated feature extraction in fundus images’. Proc. IEEE Int. Conf. on Computer Vision, 2003, vol. 1, pp. 394399.
    10. 10)
      • 9. NagaRaju, C., NagaMani, S., Prasad, G.R., Sunitha, S.: ‘Morphological edge detection algorithm based on multi-structure elements of different directions’, Int. J. Inf. Commun. Technol. Res. (IJICT), 2011, 1, (1), pp. 3743.
    11. 11)
      • 1. Wu, Ch., Agam, G., Stanchev, P.: ‘A general framework for vessel segmentation in retinal images’. Proc. IEEE Int. Sym. on Computational Intelligence in Robotics and Automation, 2007, pp. 3742.
    12. 12)
      • 12. Foracchia, M., Grisan, E., Ruggeri, A.: ‘Luminosity and contrast normalization in retinal images’, Med. Image Anal., 2005, 9, (3), pp. 179190 (doi: 10.1016/j.media.2004.07.001).
    13. 13)
      • 8. Bai, M.R., Krishna, V.V., SreeDevi, J.: ‘A new morphological approach for noise removal cum edge detection’, Int. J. Comput. Sci. Issues (IJCSI), 2010, 7, (6), pp. 187190.
    14. 14)
      • 17. Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: ‘Segmentation of blood vessels from red-free and fluorescein retinal images’, Med. Imag. Anal., 2007, 11, (1), pp. 4761 (doi: 10.1016/j.media.2006.11.004).
    15. 15)
      • 15. Mendonça, A.M., Campilho, A.: ‘Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction’, IEEE Trans. Med. Imag., 2006, 25, (9), pp. 12001213 (doi: 10.1109/TMI.2006.879955).
    16. 16)
      • 16. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.V.: ‘Ridge based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imag., 2004, 23, (4), pp. 501509 (doi: 10.1109/TMI.2004.825627).
    17. 17)
      • 14. Images from DRIVE Database. http://www.isi.uu.nl/Research/Databases/DRIVE/.
    18. 18)
      • 18. Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: ‘A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features’, IEEE Trans. Med. Imag., 2011, 30, (1), pp. 146158 (doi: 10.1109/TMI.2010.2064333).
    19. 19)
      • 3. Estabridis, K., Defigueiredo, R.: ‘Blood vessel detection via a multi window parameter transform’. Proc. 19th IEEE Symp. on Computer-Based Med. Sys. (CBMS'06), 2006, pp. 424429.
    20. 20)
      • 10. Hamadani, N.: ‘Automatic target cueing in IR imagery’. Master's thesis, Air Force Institute of Technology, WPAFB, Ohio, 1981.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2012.0472
Loading

Related content

content/journals/10.1049/iet-ipr.2012.0472
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading