Using macroscopic information in image segmentation

Using macroscopic information in image segmentation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Post-processing ‘macroscopically’ output-segmented images obtained from conventional image segmentation (IS) techniques, leads into the concept of micro–macro IS (MMIS). MMIS pays extra attention to information extracted from relatively large image regions and as a result, overall system segmentation performance improves both subjectively and objectively. The proposed post-processing scheme is generic, in the sense that can be used together with any other existing segmentation approach. Thus given an input-segmented image, MMIS has the ability to automatically select an appropriate number of regions and classes in a way that helps object-oriented visual information to become more apparent in the final segmented output image. Computer simulation results clearly indicate that significant IS performance benefits can be obtained by augmenting conventional IS schemes within an MMIS framework, with or without input images being corrupted by additive Gaussian noise


    1. 1)
      • 1. Cour, T., Florence, B., Shi, J.: ‘Spectral segmentation with multi-scale graph decomposition’. Proc. IEEE Intl. Conf. on Computer Vision and Pattern Recognition., 2005, pp. 11241131.
    2. 2)
      • 2. Felzenszwalb, P., Huttenlocher, D.: ‘Efficient graph-based image segmentation’, Int. J. Comput. Vis., 2004, 59, (2), pp. 167181 (doi: 10.1023/B:VISI.0000022288.19776.77).
    3. 3)
      • 3. Khan, A.A., Xydeas, C., Ahmed, H.: ‘Micro-macro image segmentation’. Proc. IADIS Int. Conf. on Computer Graphics, Visualization, Computer Vision and Image Processing, Italy, July 2011, pp. 192197.
    4. 4)
      • 4. Martin, D., Charless, F., Doron, T., Malik, J.: ‘A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics’. Proc. Int. Conf. Computer Vision., 2001, pp. 416423.
    5. 5)
      • 5. Arbelaez, P., Michael, M., Charless, F., Malik, J.: ‘From contours to regions: an empirical evaluation’. Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2009, pp. 2294230.
    6. 6)
      • 6. Athanasiadis, T., Mylonas, P., Avrithis, Y., Kollias, S.: ‘Semantic image segmentation and object labeling’, IEEE Trans. Circuits Syst. Video Technol., 2007, 17, (3), pp. 298312 (doi: 10.1109/TCSVT.2007.890636).
    7. 7)
      • 7. Ren, X., Malik, J.: ‘Learning a classification model for segmentation’. Proc. Int. Conf. on Computer Vision, 2003, pp. 1017.
    8. 8)
      • 8. Shi, J., Malik, J.: ‘Normalized cuts and image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 888905 (doi: 10.1109/34.868688).
    9. 9)
      • 9. Cheng, H.D., Jiang, X., Sun, Y., Wang, J.: ‘Color image segmentation: advances and prospects’, Pattern Recognit., 2001, 34, (12), pp. 22592281 (doi: 10.1016/S0031-3203(00)00149-7).
    10. 10)
      • 10. Zahn, C.T.: ‘Graph-theoretic methods for detecting and describing gestalt clusters’, IEEE Trans. Comput., 1971, 20, pp. 6886 (doi: 10.1109/T-C.1971.223083).
    11. 11)
      • 11. Grady, L.: ‘Random walks for image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (11), pp. 17681783 (doi: 10.1109/TPAMI.2006.233).
    12. 12)
      • 12. Unnikrishnan, R., Caroline, P., Martial, H.: ‘Toward objective evaluation of image segmentation algorithms’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (6), pp. 929944 (doi: 10.1109/TPAMI.2007.1046).
    13. 13)
      • 13. Fernández, A., Gómez, S.: ‘Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms’, J. Classif., 2008, 25, (1), pp. 4365 (doi: 10.1007/s00357-008-9004-x).
    14. 14)
      • 14. Zhao, Y., George, K., Usama, F.: ‘Hierarchical clustering algorithms for document catasets’, Data Min. Knowl. Discov., 2005, 10, (2), pp. 141168 (doi: 10.1007/s10618-005-0361-3).
    15. 15)
      • 15. Calderero, F., Marques, F.: ‘Region merging techniques using information theory statistical measures’, IEEE Trans. Image Process., 2010, 19, (1), pp. 15671586 (doi: 10.1109/TIP.2010.2043008).
    16. 16)
      • 16. Kim, J., John, W.F. III, Anthony, Y., Müjdat, Ç., Alan, S.W.: ‘A nonparametric statistical method for image segmentation using information theory and curve evolution’, IEEE Trans. Image Process., 2005, 14, (10), pp. 14861502 (doi: 10.1109/TIP.2005.854442).
    17. 17)
      • 17. Herbulot, A., Stéphanie, J., Stefan, D., Michel, B., Gilles, A.: ‘Segmentation of vectorial image features using shape gradients and information measures’, J. Math. Imaging Vis., 2006, 25, (3), pp. 365386 (doi: 10.1007/s10851-006-6898-y).

Related content

This is a required field
Please enter a valid email address