Image composition by constraining responses of filters

Access Full Text

Image composition by constraining responses of filters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a unified method for a wide variety of image composition tasks. The proposed method is developed by constraining the responses of a set of filters to a target image. Each filter describes an attribute of the target image. Also, each attribute field is assumed to be equal to the corresponding attribute field of an input source. The constraints imposed by all those attributes are weighted heterogeneously and formulated into a minimisation problem. For different tasks, the required attributes (e.g. gradient, texture and colour constraints) can be specified by different sources (e.g. from a given image, constructed from several images or specified by users). The framework is flexible and can be configured to meet a variety of image editing tasks. To validate the effectiveness of this method, a variety of applications have been presented, including face data illumination removal, remote-sensing images fusion, texture transfer, multi-focus image fusion, seamless texture tiling and text layer transfer. The experimental results illustrate that the proposed method is effective in performance for the presented image editing tasks with comparisons to classical methods for the specified tasks.

Inspec keywords: remote sensing; filtering theory; image fusion; minimisation; geophysical image processing; face recognition; image texture

Other keywords: attribute field; seamless texture tiling; texture constraints; gradient constraints; multifocus image fusion; remote-sensing images fusion; image editing tasks; filters; text layer transfer; texture transfer; minimisation problem; face data illumination removal; image composition tasks; target image; input source; colour constraints

Subjects: Filtering methods in signal processing; Optical, image and video signal processing; Geophysics computing; Computer vision and image processing techniques; Optimisation techniques; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Geophysical techniques and equipment; Sensor fusion; Optimisation techniques

References

    1. 1)
      • Finlayson, G., Hordley, S., Drew, M.S.: `Removing shadows from images', Proc. ECCV, 2002, p. 823–836.
    2. 2)
      • Wen, J., Gong, H., Zhang, B.: `Optimal fusion method for multi-focus images', Proc. SPIE, MIPPR, 2007, p. 67871G-1–67871G-8.
    3. 3)
      • Pérez, P., Gangnet, M., Blake, A.: `Poisson image editing', Proc. SIGGRAPH, 2003, p. 313–318.
    4. 4)
    5. 5)
      • Wang, L., Wei, L.-Y., Zhou, K., Guo, B., Shum, H.-Y.: `High dynamic range image hallucination', Proc. SIGGRAPH, 2007, article no. 72.
    6. 6)
      • Fattal, R.: `Image upsampling via imposed edges statistics', Proc. SIGGRAPH, 2007, article no. 95.
    7. 7)
      • Efros, A.A., Leung, T.K.: `Texture synthesis by non-parametric sampling', Proc. ICCV, 1999, p. 1033–1038.
    8. 8)
    9. 9)
      • Raskar, R., Ilie, A., Yu, J.: `Image fusion for context enhancement and video surrealism', Proc. NPAR, 2004, p. 85–152.
    10. 10)
    11. 11)
      • Fattal, R., Lischinski, D., Werman, M.: `Gradient domain high dynamic range compression', Proc. SIGGRAPH, 2002, p. 249–256.
    12. 12)
      • Wen, J., Li, Y., Gong, H.: `Remote sensing image fusion on gradient field', Proc. ICPR, 2006, 3, p. 643–646.
    13. 13)
      • Heeger, D.J., Bergen, J.R.: `Pyramid-based texture analysis/synthesis', Proc. SIGGRAPH, 1995, p. 229–238.
    14. 14)
      • Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: `Texture optimization for example-based synthesis', Proc. SIGGRAPH, 2005, p. 795–802.
    15. 15)
    16. 16)
      • Tappen, M.F.: `Utilizing variational optimization to learn Markov random fields', Proc. CVPR, 2007, p. 1–8.
    17. 17)
      • Tappen, M.F., Russell, B.C., Freeman, W.T.: `Efficient graphical models for processing images', Proc. CVPR, 2004, p. 673–680.
    18. 18)
      • R.A. Schowengerdt . Reconstruction of multispatial, multispectral image data using spatial frequency content. Photogram. Eng. Remote Sens. , 10 , 1325 - 1334
    19. 19)
      • Xie, X., Zheng, W.-S., Lai, J., Yuen, P.C.: `Face illumination normalization on large and small scale features', Proc. CVPR, 2008, p. 1–8.
    20. 20)
      • Roth, S., Black, M.: `Field of experts: a framework for learning image priors', Proc. CVPR, 2005, p. 860–867.
    21. 21)
      • Orzan, A., Bousseau, A., Barla, P., Thollot, J.: `Structure-preserving manipulation of photographs', Proc. SIGGRAPH, 2007, p. 103–110.
    22. 22)
      • Bae, S., Paris, S., Durand, F.: `Two-scale tone management for photographic look', Proc. SIGGRAPH, 2006, p. 637–635.
    23. 23)
      • Agrawal, A., Raskar, R., Nayar, S.K., Li, Y.: `Removing photography artifacts using gradient projection and flash-exposure sampling', Proc. SIGGRAPH, 2005, p. 828–835.
    24. 24)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2009.0129
Loading

Related content

content/journals/10.1049/iet-ipr.2009.0129
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading