Image denoising employing local mixture models in sparse domains
Image denoising employing local mixture models in sparse domains
- Author(s): H. Rabbani and S. Gazor
- DOI: 10.1049/iet-ipr.2009.0048
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): H. Rabbani 1 and S. Gazor 2
-
-
View affiliations
-
Affiliations:
1: Department of Biomedical Engineering, Isfahan University of Medical Sciences, Isfahan, Iran
2: Department of Electrical and Computer Engineering, Queen's University, Kingston, Canada
-
Affiliations:
1: Department of Biomedical Engineering, Isfahan University of Medical Sciences, Isfahan, Iran
- Source:
Volume 4, Issue 5,
October 2010,
p.
413 – 428
DOI: 10.1049/iet-ipr.2009.0048 , Print ISSN 1751-9659, Online ISSN 1751-9667
- « Previous Article
- Table of contents
- Next Article »
In this study, the authors fit three univariate mixture distributions to the image coefficients in four sparse domains [ordinary discrete wavelet transform (DWT), discrete complex wavelet transform (DCWT), discrete contourlet transform (DCOT) and discrete curvelet transform (DCUT)]. By estimating the parameters of these mixture priors locally using adjacent coefficients in the same scale, the authors characterise the heavy-tailed nature and the intrascale statistical dependency of these coefficients. Using these mixture-local-priors, the authors derive estimators using maximum a posteriori (MAP) and minimum mean squared error (MMSE) for image denoising. Using the proposed shrinkage functions in these sparse domains for various window sizes from our simulations, we conclude that: (i) among these transforms the DCWT is preferred both in terms of performance and computational cost; (ii) the best window size for denoising depends on the noise level and type of image; (iii) incorporating interscale dependency into the denoising process results in some improvement only for uncrowded images, and (iv) the MMSE estimators outperform the MAP estimators if the input peak signal-to-noise ratio (PSNR) is greater than 28 dB and the MAP estimators are preferred for PSNR smaller than 22 dB.
Inspec keywords: maximum likelihood estimation; least mean squares methods; image denoising
Other keywords: image coefficients; univariate mixture distributions; image denoising; sparse domains; local mixture models; peak signal-to-noise ratio; minimum mean squared error; intrascale statistical dependency; maximum a posteriori
Subjects: Interpolation and function approximation (numerical analysis); Other topics in statistics; Interpolation and function approximation (numerical analysis); Optical, image and video signal processing; Other topics in statistics; Computer vision and image processing techniques
References
-
-
1)
- B. Vidakovic . Nonlinear wavelet shrinkage with bayes rules and bayes factors. J. Amr Stat. Assoc. , 173 - 179
-
2)
- E. Candes , D. Donoho . (1999) Curvelets: a surprisingly effective nonadaptive representation of objects with edges’, in Cohen A., Rabut C., Schumaker L.L. (eds.): Curves and surface.
-
3)
- M.K. Mihçak , I. Kozinsev , K. Ramchandran , P. Moulin . Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Process. Lett. , 300 - 303
-
4)
- M.S. Crouse , R.D. Nowark , R.G. Baraniuk . Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process. , 4 , 886 - 902
-
5)
- F. Abramovich , T. Sapatinas , B.W. Silverman . Wavelet thresholding via a Bayesian approach. J. R. Stat. Soc. B , 4 , 725 - 749
-
6)
- Hanssen, A., Oigard, T.A.: `The normal inverse Gaussian distribution for heavy-tailed processes', Proc. IEEE EURASIP Workshop on Nonlinear Signal and Image processing, 2001.
-
7)
- J. Liu , P. Moulin . Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. IEEE Trans. Image Process. , 11 , 1647 - 1658
-
8)
- Gazor, S.: `Employing Laplacian-Gaussian densities for speech enhancement', Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP'04, 2007, p. I-297-300.
-
9)
- H. Gao . Wavelet shrinkage denoising using the non-negative garrote. J. Comput. Graph. Stat. , 469 - 488
-
10)
- M. Malfait , D. Roose . Wavelet-based image denoising using a markov random field a priori model. IEEE Trans. Image Process. , 549 - 565
-
11)
- G. Fan , X. Xia . Wavelet-based texture analysis and synthesis using hidden markov models. IEEE Trans. Circuits Syst. , 106 - 120
-
12)
- M.J. Fadili , L. Boubchir . Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities. IEEE Trans. Image Process. , 2 , 231 - 240
-
13)
- Rabbani, H., Vafadust, M., Selesnick, I.: `Wavelet based image denoising with a mixture of Gaussian distributions with local parameters', Proc 48th Int. Symp. ELMAR Focused on Multimedia Signal Proc. and Communications, 2006, p. 85–88.
-
14)
- Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: `Adaptive Wiener denoising using a Gaussian scale mixture model', Proc. Int. Conf. on Image Processing, 2001.
-
15)
- H. Chipman , E. Kolaczyk , R. McCulloch . Adaptive bayesian wavelet shrinkage. J. Amr. Stat. Assoc. , 440 , 92 - 99
-
16)
- M.A.T. Figueiredo , R.D. Nowak . Wavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior. IEEE Trans. Image Process. , 1322 - 1331
-
17)
- M.N. Do , M. Vetterli . The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. , 12 , 2091 - 2016
-
18)
- Crouse, M.S., Baraniuk, R.: `Contextual hidden markov models for wavelet-domain signal processing', Proc. 31st Asilomar Conf. on Signals, Systems and Computers, 1997.
-
19)
- A. Pizurica , W. Philips . Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Trans. Image Process. , 3 , 654 - 665
-
20)
- D.L. Donoho , I.M. Johnstone . Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Stat. Assoc. , 432 , 1200 - 1224
-
21)
- L. Sendur , I.W. Selesnick . Bivariate shrinkage functions for wavelet-based denoising expoiting interscale dependency. IEEE Trans. Signal Process. , 11 , 2744 - 2756
-
22)
- Rabbani, H., Vafadust, M., Gazor, S., Selesnick, I.: `Image denoising employing a mixture of circular symmetric Laplacian models with local parameters in complex wavelet domain', Proc. 32nd Int. Conf. on Acoustics, Speech, and Signal Processing, Hawai'i Convention Center in Honolulu, April 2007, USA.
-
23)
- F. Luisier , T. Blu , M. Unser . A new approach to image denoising: interscale orthonormal wavelet thresolding. IEEE Trans. Image Process , 3 , 593 - 606
-
24)
- H. Rabbani , M. Vafadoost . Image/video denoising based on a mixture of Laplace distributions with local parameters in multidimensional complex wavelet domain. Signal Process. , 1 , 158 - 173
-
25)
- I.W. Selesnick , R.G. Baraniuk , N.G. Kingsbury . The dual-tree complex wavelet transform – a coherent framework for multi-scale signal and image processing. IEEE Signal Process. Mag. , 6 , 123 - 151
-
26)
- Shi, F., Selesnick, I.: `Multivariate quasi-Laplacian mixture models for wavelet-based image denoising', Proc. 13th IEEE Int. Conf. on Image Processing, Atlanta, GA, USA, 2006, p. 2625–2628.
-
27)
- S.G. Chang , B. Yu . Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. , 9 , 1532 - 1546
-
28)
- D.L. Donoho . ’ Denoising by soft-thresholding. IEEE Trans. Inf. Theory. , 3 , 613 - 627
-
29)
- Boubchir, L., Fadili, J.: `Bayesian denoising in the wavelet-domain using an analytical approximate alpha-stable prior', Proc. 17th Int. Conf. in Pattern Recognition, August 2004, Cambridge, UK.
-
30)
- M. Kazubek . Wavelet domain image denoising by thresholding and Wiener filtering. IEEE Signal Process. Lett. , 11 , 324 - 326
-
31)
- Boubchir, L., Fadili, J.: `Bayesian denoising based on the MAP estimation in wavelet-domain using Bessel K form prior', Proc. 12th IEEE Int. Conf. on Image Processing, September 2005, Genova.
-
32)
- Simoncelli, E.: `Modeling the joint statistics of images in the wavelet domain', Proc. SPIE 44th Annual Meeting, 1999.
-
33)
- R.A. Redner , H.F. Walker . Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. , 2 , 195 - 239
-
34)
- S.M.M. Rahman , M.O. Ahmad , M.N.S. Swamy . Bayesian wavelet-based image denoising using the Gauss-Hermite expansion. IEEE Trans. Image Process. , 10 , 1755 - 1771
-
35)
- I.K. Eom , Y.S. Kim . Wavelet-based denoising with nearly arbitrarily shaped windows. IEEE Signal Process. Lett. , 12 , 937 - 940
-
36)
- Portilla, J., Simoncelli, E.: `Image denoising via adjaustment of wavelet coefficient magnitude correlation', Proc. Seventh Int. Conf. on Image Processing, 2000.
-
37)
- M. Wainwright , E. Simoncelli , A. Willsky . Random cascade on wavelet trees and their use in modeling nutural images. Appl. Comput. Harmon. Anal , 89 - 123
-
38)
- H. Chernoff , E.L. Lehmann . The use of maximum likelihood estimates in χ2 tests for goodness-of-fit. Ann. Math. Stat. , 579 - 586
-
39)
- A.P. Dempster , N.M. Laird , D.B. Rubin . Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) , 1 , 1 - 38
-
40)
- H. Rabbani , M. Vafadust , P. Abolmaesumi , S. Gazor . Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors. IEEE Trans. Biomed. Eng. , 9 , 2152 - 2160
-
41)
- Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.N.S.: `Wavelet-based despeckling of medical ultrasound images with the symmetric normal inverse Gaussian Prior', Proc. 32nd Int. Conf. on Acoustics, Speech, and Signal Processing, Hawai'i Convention Center in Honolulu, April 2007, USA.
-
42)
- D.D.-Y. Po , M.N. Do . Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Process. , 6 , 1610 - 1620
-
43)
- J. Hoeting , D. Madigan , A. Raftery , C.T. Volinsky . Bayesian model averaging: a tutorial (with discussion). Stat. Sci.
-
44)
- S. Mallat . (1998) A wavelet tour of signal processing.
-
45)
- H. Chipman , L. Wolfson . Prior elicitation in the wavelet domain. Wavelets Stat. , 83 - 94
-
46)
- Rabbani, H., Vafadust, M., Gazor, S.: `Image denoising based on a mixture of Laplace distributions with local parameters in complex wavelet domain', Proc. 13th IEEE Int. Conf. on Image Processing, October 2006, Atlanta.
-
47)
- W.T. Freeman , E.H. Adelson . The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 891 - 906
-
48)
- I. Pitas , A. Venetsanopoulos . (1990) Nonlinear digital filters.
-
49)
- Rabbani, H., Vafadust, M., Gazor, S.: `Image denoising in curvelet transform domain using Gaussian mixture model with local parameters for distribution of noise-free coefficients', Proc. Fourth IEEE/EMBS Int. Summer School and Symp. on Medical Devices and Biosensors, 2004, 25, p. 57–60.
-
50)
- G. Fan , X. Xia . Image denoising using a local contextual hidden markov model in the wavelet domain. IEEE Signal Process. Lett. , 125 - 128
-
51)
- Z. Cai , T.H. Cheng , C. Lu , K.R. Subramanium . Efficient wavelet-based image denoising algorithm. Electron. Lett. , 11 , 683 - 685
-
52)
- D.L. Donoho , I.M. Johnstone . Ideal spatial adaptation by wavelet shrinkage. Biometrika , 3 , 425 - 455
-
53)
- J. Portilla , V. Strela , M.J. Wainwright , E.P. Simoncelli . Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. , 1338 - 1351
-
54)
- J.L. Starck , E. Candes , D. Donoho . The Curvelet transform for image denoising. IEEE Trans. Image Process. , 6 , 670 - 684
-
55)
- H.-Y. Gao , A.G. Bruce . WaveShrink with firm shrinkage. Stat. Sin. , 855 - 874
-
56)
- Boubchir, L., Fadili, M.J.: `Multivariate statistical modeling of images with the curvelet transform', Proc. Eighth Int. Conf. on Signal Proc. and Its Applications, 2005, p. 747–750.
-
57)
- A. Pizurica , W. Philips , I. Lemahieu , M. Acheroy . A joint inter- and intrascale statistical model for bayesian wavelet based image denoising. IEEE Trans. Image Process. , 5 , 545 - 557
-
58)
- G. Fan , X. Xia . Improved hidden markov models in the wavelet-domain. IEEE Trans. Signal Process. , 115 - 120
-
59)
- H. Rabbani , M. Vafadoost . Wavelet based image denoising based on a mixture of Laplace distributions. Iranian J. Sci. Technol. , 711 - 733
-
60)
- A. Hyvarinen . Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation. Neural Comput. , 1739 - 1768
-
61)
- P. Moulin , J. Liu . Analysis of multiresolution image denoising schemes using a generalized Gaussian and complexity priors. IEEE Trans. Inf. Theory , 909 - 919
-
62)
- A. Achim , A. Bezerianos , P. Tsakalides . Novel bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imag. , 5 , 772 - 783
-
63)
- Lo, Wan Yee, Selesnick, I.: `Wavelet-domain soft-thresholding for non-stationary noise', Proc. 13th IEEE Int. Conf. on Image Processing, 2006, Atlanta, GA, USA, p. 1441–1444.
-
64)
- Azimifar, Z., Fieguth, P., Jernigan, E.: `Hierarchical markov models for wavelet-domain statistics', Proc. 12th IEEE Statistical Signal Processing Workshop, 2003.
-
65)
- L. Sendur , I.W. Selesnick . Bivariate shrinkage with local variance estimation. IEEE Signal Process. Lett. , 438 - 441
-
66)
- Zhan, C.Q., Karam, L.J.: `Wavelet-based adaptive image denoising with edge preservation', Proc. IEEE Int. Conf. on Image Processing, 2003, 1, p. 97–100.
-
67)
- A.L. Cunha , J. Zhou , M.N. Do . “The nonsubsampled contourlet transform: theory, design and applications”. IEEE Trans. Image Process , 10 , 3089 - 3101
-
68)
- Li, X., Orchard, M.: `Spatially adaptive denoising under overcomplete expansion', Proc. IEEE Int. Conf. on Image Processing, 2000, p. 300–303.
-
69)
- S.G. Mallat . A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 674 - 693
-
70)
- I.S. Gradshteyn , I.M. Ryzhik . (1980) Table of integrals, series and products.
-
1)
Related content
