Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Image denoising employing local mixture models in sparse domains

Image denoising employing local mixture models in sparse domains

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors fit three univariate mixture distributions to the image coefficients in four sparse domains [ordinary discrete wavelet transform (DWT), discrete complex wavelet transform (DCWT), discrete contourlet transform (DCOT) and discrete curvelet transform (DCUT)]. By estimating the parameters of these mixture priors locally using adjacent coefficients in the same scale, the authors characterise the heavy-tailed nature and the intrascale statistical dependency of these coefficients. Using these mixture-local-priors, the authors derive estimators using maximum a posteriori (MAP) and minimum mean squared error (MMSE) for image denoising. Using the proposed shrinkage functions in these sparse domains for various window sizes from our simulations, we conclude that: (i) among these transforms the DCWT is preferred both in terms of performance and computational cost; (ii) the best window size for denoising depends on the noise level and type of image; (iii) incorporating interscale dependency into the denoising process results in some improvement only for uncrowded images, and (iv) the MMSE estimators outperform the MAP estimators if the input peak signal-to-noise ratio (PSNR) is greater than 28 dB and the MAP estimators are preferred for PSNR smaller than 22 dB.

References

    1. 1)
      • B. Vidakovic . Nonlinear wavelet shrinkage with bayes rules and bayes factors. J. Amr Stat. Assoc. , 173 - 179
    2. 2)
      • E. Candes , D. Donoho . (1999) Curvelets: a surprisingly effective nonadaptive representation of objects with edges’, in Cohen A., Rabut C., Schumaker L.L. (eds.): Curves and surface.
    3. 3)
    4. 4)
    5. 5)
      • F. Abramovich , T. Sapatinas , B.W. Silverman . Wavelet thresholding via a Bayesian approach. J. R. Stat. Soc. B , 4 , 725 - 749
    6. 6)
      • Hanssen, A., Oigard, T.A.: `The normal inverse Gaussian distribution for heavy-tailed processes', Proc. IEEE EURASIP Workshop on Nonlinear Signal and Image processing, 2001.
    7. 7)
    8. 8)
      • Gazor, S.: `Employing Laplacian-Gaussian densities for speech enhancement', Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP'04, 2007, p. I-297-300.
    9. 9)
      • H. Gao . Wavelet shrinkage denoising using the non-negative garrote. J. Comput. Graph. Stat. , 469 - 488
    10. 10)
      • M. Malfait , D. Roose . Wavelet-based image denoising using a markov random field a priori model. IEEE Trans. Image Process. , 549 - 565
    11. 11)
      • G. Fan , X. Xia . Wavelet-based texture analysis and synthesis using hidden markov models. IEEE Trans. Circuits Syst. , 106 - 120
    12. 12)
    13. 13)
      • Rabbani, H., Vafadust, M., Selesnick, I.: `Wavelet based image denoising with a mixture of Gaussian distributions with local parameters', Proc 48th Int. Symp. ELMAR Focused on Multimedia Signal Proc. and Communications, 2006, p. 85–88.
    14. 14)
      • Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: `Adaptive Wiener denoising using a Gaussian scale mixture model', Proc. Int. Conf. on Image Processing, 2001.
    15. 15)
      • H. Chipman , E. Kolaczyk , R. McCulloch . Adaptive bayesian wavelet shrinkage. J. Amr. Stat. Assoc. , 440 , 92 - 99
    16. 16)
      • M.A.T. Figueiredo , R.D. Nowak . Wavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior. IEEE Trans. Image Process. , 1322 - 1331
    17. 17)
    18. 18)
      • Crouse, M.S., Baraniuk, R.: `Contextual hidden markov models for wavelet-domain signal processing', Proc. 31st Asilomar Conf. on Signals, Systems and Computers, 1997.
    19. 19)
    20. 20)
      • D.L. Donoho , I.M. Johnstone . Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Stat. Assoc. , 432 , 1200 - 1224
    21. 21)
    22. 22)
      • Rabbani, H., Vafadust, M., Gazor, S., Selesnick, I.: `Image denoising employing a mixture of circular symmetric Laplacian models with local parameters in complex wavelet domain', Proc. 32nd Int. Conf. on Acoustics, Speech, and Signal Processing, Hawai'i Convention Center in Honolulu, April 2007, USA.
    23. 23)
    24. 24)
      • H. Rabbani , M. Vafadoost . Image/video denoising based on a mixture of Laplace distributions with local parameters in multidimensional complex wavelet domain. Signal Process. , 1 , 158 - 173
    25. 25)
    26. 26)
      • Shi, F., Selesnick, I.: `Multivariate quasi-Laplacian mixture models for wavelet-based image denoising', Proc. 13th IEEE Int. Conf. on Image Processing, Atlanta, GA, USA, 2006, p. 2625–2628.
    27. 27)
    28. 28)
    29. 29)
      • Boubchir, L., Fadili, J.: `Bayesian denoising in the wavelet-domain using an analytical approximate alpha-stable prior', Proc. 17th Int. Conf. in Pattern Recognition, August 2004, Cambridge, UK.
    30. 30)
    31. 31)
      • Boubchir, L., Fadili, J.: `Bayesian denoising based on the MAP estimation in wavelet-domain using Bessel K form prior', Proc. 12th IEEE Int. Conf. on Image Processing, September 2005, Genova.
    32. 32)
      • Simoncelli, E.: `Modeling the joint statistics of images in the wavelet domain', Proc. SPIE 44th Annual Meeting, 1999.
    33. 33)
      • R.A. Redner , H.F. Walker . Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. , 2 , 195 - 239
    34. 34)
      • S.M.M. Rahman , M.O. Ahmad , M.N.S. Swamy . Bayesian wavelet-based image denoising using the Gauss-Hermite expansion. IEEE Trans. Image Process. , 10 , 1755 - 1771
    35. 35)
    36. 36)
      • Portilla, J., Simoncelli, E.: `Image denoising via adjaustment of wavelet coefficient magnitude correlation', Proc. Seventh Int. Conf. on Image Processing, 2000.
    37. 37)
      • M. Wainwright , E. Simoncelli , A. Willsky . Random cascade on wavelet trees and their use in modeling nutural images. Appl. Comput. Harmon. Anal , 89 - 123
    38. 38)
      • H. Chernoff , E.L. Lehmann . The use of maximum likelihood estimates in χ2 tests for goodness-of-fit. Ann. Math. Stat. , 579 - 586
    39. 39)
      • A.P. Dempster , N.M. Laird , D.B. Rubin . Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) , 1 , 1 - 38
    40. 40)
      • H. Rabbani , M. Vafadust , P. Abolmaesumi , S. Gazor . Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors. IEEE Trans. Biomed. Eng. , 9 , 2152 - 2160
    41. 41)
      • Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.N.S.: `Wavelet-based despeckling of medical ultrasound images with the symmetric normal inverse Gaussian Prior', Proc. 32nd Int. Conf. on Acoustics, Speech, and Signal Processing, Hawai'i Convention Center in Honolulu, April 2007, USA.
    42. 42)
    43. 43)
      • J. Hoeting , D. Madigan , A. Raftery , C.T. Volinsky . Bayesian model averaging: a tutorial (with discussion). Stat. Sci.
    44. 44)
      • S. Mallat . (1998) A wavelet tour of signal processing.
    45. 45)
      • H. Chipman , L. Wolfson . Prior elicitation in the wavelet domain. Wavelets Stat. , 83 - 94
    46. 46)
      • Rabbani, H., Vafadust, M., Gazor, S.: `Image denoising based on a mixture of Laplace distributions with local parameters in complex wavelet domain', Proc. 13th IEEE Int. Conf. on Image Processing, October 2006, Atlanta.
    47. 47)
      • W.T. Freeman , E.H. Adelson . The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 891 - 906
    48. 48)
      • I. Pitas , A. Venetsanopoulos . (1990) Nonlinear digital filters.
    49. 49)
      • Rabbani, H., Vafadust, M., Gazor, S.: `Image denoising in curvelet transform domain using Gaussian mixture model with local parameters for distribution of noise-free coefficients', Proc. Fourth IEEE/EMBS Int. Summer School and Symp. on Medical Devices and Biosensors, 2004, 25, p. 57–60.
    50. 50)
    51. 51)
    52. 52)
      • D.L. Donoho , I.M. Johnstone . Ideal spatial adaptation by wavelet shrinkage. Biometrika , 3 , 425 - 455
    53. 53)
    54. 54)
      • J.L. Starck , E. Candes , D. Donoho . The Curvelet transform for image denoising. IEEE Trans. Image Process. , 6 , 670 - 684
    55. 55)
      • H.-Y. Gao , A.G. Bruce . WaveShrink with firm shrinkage. Stat. Sin. , 855 - 874
    56. 56)
      • Boubchir, L., Fadili, M.J.: `Multivariate statistical modeling of images with the curvelet transform', Proc. Eighth Int. Conf. on Signal Proc. and Its Applications, 2005, p. 747–750.
    57. 57)
    58. 58)
    59. 59)
      • H. Rabbani , M. Vafadoost . Wavelet based image denoising based on a mixture of Laplace distributions. Iranian J. Sci. Technol. , 711 - 733
    60. 60)
      • A. Hyvarinen . Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation. Neural Comput. , 1739 - 1768
    61. 61)
    62. 62)
      • A. Achim , A. Bezerianos , P. Tsakalides . Novel bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imag. , 5 , 772 - 783
    63. 63)
      • Lo, Wan Yee, Selesnick, I.: `Wavelet-domain soft-thresholding for non-stationary noise', Proc. 13th IEEE Int. Conf. on Image Processing, 2006, Atlanta, GA, USA, p. 1441–1444.
    64. 64)
      • Azimifar, Z., Fieguth, P., Jernigan, E.: `Hierarchical markov models for wavelet-domain statistics', Proc. 12th IEEE Statistical Signal Processing Workshop, 2003.
    65. 65)
    66. 66)
      • Zhan, C.Q., Karam, L.J.: `Wavelet-based adaptive image denoising with edge preservation', Proc. IEEE Int. Conf. on Image Processing, 2003, 1, p. 97–100.
    67. 67)
    68. 68)
      • Li, X., Orchard, M.: `Spatially adaptive denoising under overcomplete expansion', Proc. IEEE Int. Conf. on Image Processing, 2000, p. 300–303.
    69. 69)
    70. 70)
      • I.S. Gradshteyn , I.M. Ryzhik . (1980) Table of integrals, series and products.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2009.0048
Loading

Related content

content/journals/10.1049/iet-ipr.2009.0048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address