http://iet.metastore.ingenta.com
1887

Real-time video object segmentation in H.264 compressed domain

Real-time video object segmentation in H.264 compressed domain

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study the authors proposed a real-time video object segmentation algorithm that works in the H.264 compressed domain. The algorithm utilises the motion information from the H.264 compressed bit stream to identify background motion model and moving objects. In order to preserve spatial and temporal continuity of objects, Markov random field (MRF) is used to model the foreground field. Quantised transform coefficients of the residual frame are also used to improve segmentation result. Experimental results show that the proposed algorithm can effectively extract moving objects from different kinds of sequences. The computation time of the segmentation process is merely about 16 ms per frame for CIF size frame, allowing the algorithm to be applied in real-time applications.

References

    1. 1)
      • Overview of the MPEG-4 Standard, V.18 – Singapore Version, ISO/IEC JTC1/SC29/WG11 N4030, March 2001.
    2. 2)
      • S.F. Chang , T. Sikora , A. Puri . Overview of the MPEG-7 standard. IEEE Trans. Circuits Syst. Video Technol. , 6 , 688 - 695
    3. 3)
      • T. Meier , K.N. Ngan . Video segmentation for content-based coding. IEEE Trans. Circuits Syst. Video Technol. , 8 , 1190 - 1203
    4. 4)
      • Y.P. Tsai , C.C. Lai , Y.P. Hung , Z.C. Shih . A Bayesian approach to video object segmentation via merging 3-D watershed volumes. IEEE Trans. Circuits Syst. Video Technol. , 1 , 175 - 180
    5. 5)
      • Y. Tsaig , A. Averbuch . Automatic segmentation of moving objects in video sequences: a region labeling approach. IEEE Trans. Circuits Syst. Video Technol. , 7 , 597 - 612
    6. 6)
      • Y. Wang , K.F. Loe , T. Tan , J.K. Wu . Spatiotemporal video segmentation based on graphical models. IEEE Trans. Image Process. , 7 , 937 - 947
    7. 7)
      • Zeng, W., Gao, W.: `Semantic object segmentation by a spatio-temporal MRF model', Proc. 17th Int. Conf. Pattern Recognition, ICPR, 23–26 August 2004, 4, p. 775–780.
    8. 8)
      • R.V. Babu , K.R. Ramakrishnan , S.H. Srinivasan . Video object segmentation: a compressed domain approach. IEEE Trans. Circuits Syst. Video Technol. , 4 , 462 - 474
    9. 9)
      • Eng, H.L., Ma, K.K.: `Spatiotemporal segmentation of moving video objects over MPEG compressed domain', IEEE Int. Conf. Multimedia and Expo, ICME 2000, 3, p. 1531–1534.
    10. 10)
      • V. Mezaris , I. Kompatsiaris , M.G. Strintzis . Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans. Circuits Syst. Video Technol. , 5 , 606 - 621
    11. 11)
      • Sukmarg, O., Rao, K.R.: `Fast object detection and segmentation in MPEG compressed domain', Proc. TENCON 2000, 3, p. 364–368.
    12. 12)
      • T. Wiegand , G.J. Sullivan , G. Bjontegaard , A. Luthra . Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. , 7 , 560 - 576
    13. 13)
      • Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: `Draft ITU-T recommendation H.264 and final draft international standard 14496-10 advanced video coding', Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, Doc. JVT-G050rl, May 2003, Geneva, Switzerland.
    14. 14)
      • Z. Liu , Z. Zhang , L. Shen . Moving object segmentation in the H.264 compressed domain. Opt. Eng. , 1
    15. 15)
      • W. Zeng , J. Du , W. Gao , Q. Huang . Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model. Real-Time Imaging , 4 , 290 - 299
    16. 16)
      • M.A. Fischler , R.C. Bolles . Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM , 381 - 395
    17. 17)
      • H. Wang , D. Suter . Robust adaptive-scale parametric model estimation for computer vision. IEEE Trans. Pattern Anal. Mach. Intell. , 11 , 1459 - 1474
    18. 18)
      • Cucchiara, R., Prati, A., Vezzani, R.: `Object segmentation in videos from moving camera with MRFs on color and motion features', Proc. IEEE Comput. Soc. Conf. Computer Vision and Pattern Recognition, 18–20 June 2003, 1, p. I-405–I-410.
    19. 19)
      • S.Z. Li . (2001) Markov random field modeling in image analysis.
    20. 20)
      • A. Rosenfeld , A.C. Kak . (1982) Digital picture processing.
    21. 21)
      • H.264 Reference Software JM10.1, available at: http://iphome.hhi.de/suehring/tml/download/old_jm/.
    22. 22)
      • Bjontegaard, G.: `Calculation of average PSNR differences between RD curves', Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Doc. VCEG-M33, March 2001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2008.0093
Loading

Related content

content/journals/10.1049/iet-ipr.2008.0093
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address