Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Lightweight and privacy-preserving authentication scheme with the resilience of desynchronisation attacks for WBANs

Lightweight and privacy-preserving authentication scheme with the resilience of desynchronisation attacks for WBANs

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With the advances in wireless communication and Internet of things, wireless body area networks (WBANs) have attracted more and more attention because of the potential in improving the quality of health care services. With the help of WBANs, the user can access the patient's life-critical data generated by miniaturised medical sensors, and remote health care monitoring services are provided. Since the open nature of wireless channel and sensitivity of transmitted information, the security and privacy of such personal data are becoming important issues that must be dealt with. In the past few years, a large number of authentication schemes had been proposed to solve these issues. However, most of the existing schemes are not secure enough. As a step toward this direction, in this study, the authors present a privacy-preserving authentication scheme with adaptive resilience of desynchronisation attacks for WBANs, in which lightweight crypto-modules are adopted to pursue the best efficiency. The proposed scheme adopts the pseudonym identity technique to provide user anonymity, and one-way hash chain technique and serial number method are employed to ensure forward secrecy and resist desynchronisation attack, respectively. Analysis and comparison results demonstrate that the proposed scheme achieves a delicate balance between security and efficiency.

References

    1. 1)
      • 1. Hanson, M.A., Powell, H.C., Barth, A.T., et al: ‘Body area sensor networks: challenges and opportunities’, Computer (Long Beach Calif.), 2009, 42, pp. 5865.
    2. 2)
      • 24. Wu, F., Li, X., Sangaiah, A.K., et al: ‘A lightweight and robust two-factor authentication scheme for personalized health care systems using wireless medical sensor networks’, Future Gener. Comput. Syst., 2017, 82, pp. 727737.
    3. 3)
      • 23. Kocher, P., Jaffe, J., Jun, B.: ‘Differential power analysis’. Advances in Cryptology – CRYPTO'99, CA, USA, 1999, p. 789.
    4. 4)
      • 7. Challa, S., Das, A.K., Odelu, V., et al: ‘An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless health care sensor networks’, Comput. Electr. Eng., 2017, 69, pp. 534554.
    5. 5)
      • 9. Mir, O., Munilla, J., Kumari, S.: ‘Efficient anonymous authentication with key agreement protocol for wireless medical sensor networks’, Peer-to-Peer Netw. Appl., 2015, 10, (1), pp. 113.
    6. 6)
      • 27. Burrows, M., Abadi, M., Needham, R.M.: ‘A logic of authentication’. Proc. Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1989, vol. 426, pp. 233271, https://royalsocietypublishing.org/journal/rspa.
    7. 7)
      • 29. Kumar, P., Lee, S.G., Lee, H.J.: ‘E-SAP: efficient-strong authentication protocol for health care applications using wireless medical sensor networks’, Sensors, 2012, 12, pp. 16251647.
    8. 8)
      • 35. Omala, A.A., Kibiwott, K.P., Li, F.G.: ‘An efficient remote authentication scheme for wireless body area network’, J. Med. Syst., 2017, 41, p. 25.
    9. 9)
      • 25. Amin, R., Islam, S., Biswas, G, et al: ‘A robust and anonymous patient monitoring system using wireless medical sensor networks’, Future Gener. Comput. Syst., 2015, 80, pp. 483495.
    10. 10)
      • 19. Gope, P., Hwang, T.: ‘A realistic lightweight anonymous authentication protocol for securing real-time application data access in wireless sensor networks’, IEEE Trans. Ind. Electron., 2016, 63, pp. 71247132.
    11. 11)
      • 16. Wang, D., Wang, N., Wang, P., et al: ‘Preserving privacy for free: efficient and provably secure two-factor authentication scheme with user anonymity’, Inf. Sci., 2015, 321, pp. 162178.
    12. 12)
      • 3. Wan, J.F., Zou, C.F., Ullah, S.: ‘Cloud-enabled wireless body area networks for pervasive health care’, IEEE Netw., 2013, 27, pp. 5661.
    13. 13)
      • 31. Yeh, C.K., Chen, H.M., Lo, J.W., et al: ‘An authentication protocol for ubiquitous health monitoring systems’, J. Med. Biol. Eng., 2013, 33, pp. 415419.
    14. 14)
      • 22. Dolev, D., Yao, A.: ‘On the security of public key protocols’, IEEE Trans. Inf. Theory, 1983, 29, pp. 198208.
    15. 15)
      • 32. Liu, J., Zhang, Z., Chen, X., et al: ‘Certificateless remote anonymous authentication schemes for wireless body area networks’, IEEE Trans. Parallel Distrib. Syst., 2014, 25, pp. 332342.
    16. 16)
      • 45. Shuai, M.X., Liu, B., Yu, N.H., et al: ‘Anonymous authentication scheme for smart home environment with provable security’, Comput. Secur., 2019, 86, pp. 132146.
    17. 17)
      • 14. Wu, F., Xu, L.L., Kumari, S., et al: ‘An improved and anonymous two-factor authentication protocol for health care applications with wireless medical sensor networks’, Multimed. Syst., 2015, 23, pp. 111.
    18. 18)
      • 20. Shuai, M.X., Liu, B., Yu, N.H., et al: ‘Lightweight and secure three-factor authentication scheme for remote patient monitoring using on-body wireless networks’, Secur. Commun. Netw., 2019, pp. 114.
    19. 19)
      • 33. Zhao, Z.: ‘An efficient anonymous authentication scheme for wireless body area networks using elliptic curve cryptosystem’, J. Med. Syst., 2014, 38, p. 13.
    20. 20)
      • 6. Rahmani, A.M., Gia, T.N., Negash, B., et al: ‘Exploiting smart e-health gateways at the edge of health care Internet-of-things: a fog computing approach’, Future Gener. Comput. Syst., 2018, 78, pp. 641658.
    21. 21)
      • 36. Lu, Y.R., Li, L.X., Peng, H.P., et al: ‘An enhanced biometric-based authentication scheme for telecare medicine information systems using elliptic curve cryptosystem’, J. Med. Syst., 2015, 39, p. 32.
    22. 22)
      • 40. Li, X., Ibrahim, M.H., Kumari, S., et al: ‘Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks’, Comput. Netw., 2017, 10, (1), pp. 429443.
    23. 23)
      • 34. Wang, C., Zhang, Y.: ‘New authentication scheme for wireless body area networks using the bilinear pairing’, J. Med. Syst., 2015, 39, p. 136.
    24. 24)
      • 11. Wang, D., Wang, P.: ‘Two birds with one stone: two-factor authentication with security beyond conventional bound’, IEEE Trans. Dependable Secur. Comput., 2018, 15, pp. 708722.
    25. 25)
      • 13. Das, A.K., Sutrala, A.K., Odelu, V., et al: ‘A secure smart card-based anonymous user authentication scheme for health care applications using wireless medical sensor networks’, Wirel. Pers. Commun., 2016, 94, pp. 135.
    26. 26)
      • 12. Wang, D., Wang, P.: ‘On the anonymity of two-factor authentication schemes for wireless sensor networks: attacks, principle and solutions’, Comput. Netw., 2014, 73, pp. 4157.
    27. 27)
      • 26. Ali, R., Pal, A.K., Kumari, S., et al: ‘An enhanced three-factor-based authentication protocol using wireless medical sensor networks for health care monitoring’, J. Ambient Intell. Humanized Comput., 2018, pp. 122.
    28. 28)
      • 21. Li, X., Niu, J.W., Kumari, S., et al: ‘A three-factor anonymous authentication scheme for wireless sensor networks in Internet of things environments’, J. Netw. Comput. Appl., 2018, 103, pp. 194204.
    29. 29)
      • 4. Liu, B., Yan, Z.S., Chen, C.W.: ‘MAC protocol in wireless body area networks for E-health: challenges and a context-aware design’, IEEE Wirel. Commun., 2013, 20, pp. 6472.
    30. 30)
      • 37. Li, X., Niu, J.W., Kumari, S., et al: ‘A new authentication protocol for health care applications using wireless medical sensor networks with user anonymity’, Secur. Commun. Netw., 2016, 9, pp. 26432655.
    31. 31)
      • 41. He, D.B., Zeadally, S., Kumar, N., et al: ‘Anonymous authentication for wireless body area networks with provable security’, IEEE Syst. J., 2017, 99, pp. 112.
    32. 32)
      • 28. Blanchet, B.: ‘An efficient cryptographic protocol verifier based on prolog rules’. 14th IEEE Computer Security Foundations Workshop (CSFW–14), Cape Breton, NS, Canada, 2001, vol. 1, pp. 8296.
    33. 33)
      • 39. Lu, Y.R., Li, L.X., Peng, H.P., et al: ‘A novel smart card-based user authentication and key agreement scheme for heterogeneous wireless sensor networks’, Wirel. Pers. Commun., 2017, 96, pp. 813832.
    34. 34)
      • 17. Yang, M.H.: ‘Across-authority lightweight ownership transfer protocol’, Electron. Commun. Res. Appl., 2011, 10, pp. 375383.
    35. 35)
      • 2. Zimmerman, T.G.: ‘Personal area networks (PAN): near-field intra-body communication’, Massachusetts Inst. Technol., 1995, 35, pp. 609617.
    36. 36)
      • 8. Srinivas, J., Mishra, D., Mukhopadhyay, S.: ‘A mutual authentication framework for wireless medical sensor networks’, J. Med. Syst., 2017, 41, p. 80.
    37. 37)
      • 43. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: ‘An application specific protocol architecture for wireless microsensor networks’, IEEE Trans. Wirel. Commun., 2002, 1, pp. 660670.
    38. 38)
      • 10. Wang, D., Li, W.T., Wang, P.: ‘Measuring two-factor authentication schemes for real-time data access in industrial wireless sensor networks’, IEEE Trans. Ind. Inf., 2018, 14, pp. 40814092.
    39. 39)
      • 44. Wang, D., Cheng, H.B., Wang, P., et al: ‘Zipf's law in passwords’, IEEE Trans. Inf. Forensics Sec., 2017, 12, pp. 27762791.
    40. 40)
      • 38. Peng, H.P., Tian, Y., Kurths, J., et al: ‘Secure and energy-efficient data transmission system based on chaotic compressive sensing in body-to-body networks’, IEEE Trans. Biomed. Circuits Syst., 2017, 11, pp. 558573.
    41. 41)
      • 42. Li, L.X., Liu, L.F., Peng, H.P., et al: ‘Flexible and secure data transmission system based on semi-tensor compressive sensing in wireless body area networks’, IEEE Internet Things J., 2019, 6, pp. 32123227.
    42. 42)
      • 30. He, D.B., Kumar, N., Chen, J.H.: ‘Robust anonymous authentication protocol for health care applications using wireless medical sensor networks’, Multimed. Syst., 2015, 21, pp. 4960.
    43. 43)
      • 48. Wu, F., Xu, L.L., Kumari, S., et al: ‘A novel and provably secure authentication and key agreement scheme with user anonymity for global mobility networks’, Secur. Commun. Netw., 2016, 9, pp. 35273542.
    44. 44)
      • 15. Wu, F., Li, X., Sangaiah, A.K., et al: ‘A lightweight and robust two-factor authentication scheme for personalized health care systems using wireless medical sensor networks’, Future Gener. Comput. Syst., 2018, 82, pp. 727737.
    45. 45)
      • 47. Lightweight and privacy-preserving authentication scheme with adaptive resilience of desynchronisation attacks for wireless body area networks’, 2020, Available at https://github.com/smx12345/code/blob/master/healthcareIET.pv.
    46. 46)
      • 18. Li, T., Wang, G.L.: ‘Security analysis of two ultra-lightweight RFID authentication protocols’. Proc. IFIP Int. Information Security Conf., Sandton, South Africa, 2007, vol. 232, pp. 109120.
    47. 47)
      • 46. Xiong, L., Peng, D., Peng, T., et al: ‘A lightweight anonymous authentication protocol with perfect forward secrecy for wireless sensor networks’, Sensors, 2017, 17, pp. 26812709.
    48. 48)
      • 5. He, D.B., Zeadally, S.: ‘Authentication protocol for an ambient assisted living system’, IEEE Commun. Mag., 2015, 53, pp. 7177.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2019.0491
Loading

Related content

content/journals/10.1049/iet-ifs.2019.0491
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address