http://iet.metastore.ingenta.com
1887

Ways to merge two secret sharing schemes

Ways to merge two secret sharing schemes

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A secret sharing scheme implemented in an organisation is designed to reflect the power structure in that organisation. When two organisations merge, this usually requires a number of substantial changes and, in particular, changes to their secret sharing schemes which have to be merged in the way which reflects a new role of each of the organisations. This study looks at the ways secret sharing scheme can be modified when organisational changes occur. The authors restrict themselves with the class of ideal linear secret sharing schemes and describe how matrices of these linear schemes have to be modified when they take the sum, the product or the composition of two linear access structures.

References

    1. 1)
      • 1. Shamir, A.: ‘How to share a secret’, Commun. ACM, 1979, 22, pp. 612613.
    2. 2)
      • 2. Blakley, G.R.: ‘Safeguarding cryptographic keys’. Proc. of the national computer Conf., New York, NY, USA, 1979, vol. 48, p. 313.
    3. 3)
      • 3. Simmons, G.J.: ‘How to (really) share a secret’. Proc. of the 8th Annual Int. Cryptology Conf. on Advances in Cryptology, Santa Barbara, CA, USA, 1990, pp. 390448.
    4. 4)
      • 4. Tassa, T.: ‘Hierarchical threshold secret sharing’, J. Cryptol., 2007, 20, pp. 237264.
    5. 5)
      • 5. Brickell, E.F.: ‘Some ideal secret sharing schemes’. Advances in cryptology – EUROCRYPT ‘89, Berlin, Heidelberg, 1990, pp. 468475.
    6. 6)
      • 6. Karchmer, M., Wigderson, A.: ‘On span programs’. Proc. of the Eighth Annual Structure in Complexity Theory Conf. IEEE, San Diego, CA, USA, 1993, pp. 102111.
    7. 7)
      • 7. Beimel, A.: ‘Secret-sharing schemes: A survey’. Coding and Cryptology, Third Int. Workshop IWCC 2011, Qingdao, People's Republic of China, 2011 (LNCS, 6639), pp. 1146.
    8. 8)
      • 8. Beimel, A., Tassa, T., Weinreb, E.: ‘Characterizing ideal weighted threshold secret sharing’, SIAM J. Discrete Math., 2008, 22, (1), pp. 360397.
    9. 9)
      • 9. Farràs, O., Padró, C.: ‘Ideal hierarchical secret sharing schemes’. Theory of Cryptography, Springer Berlin/Heidelberg, 2010, (LNCS, 5978), pp. 219236.
    10. 10)
      • 10. Hameed, A., Slinko, A.: ‘A characterisation of ideal weighted secret sharing schemes’, J Math. Cryptology, 2015, 9, (4), pp. 227244.
    11. 11)
      • 11. Farràs, O., Martí.Farré, J., Padró, C.: ‘Ideal multipartite secret sharing schemes’, J. Cryptol., 2012, 25, pp. 434463.
    12. 12)
      • 12. Taylor, A.D., Zwicker, W.S.: ‘Simple games’ (Oxford University Press, Oxford, UK, 1999).
    13. 13)
      • 13. Seymour, P.: ‘A forbidden minor characterization of matroid ports’, Q. J. Math., 1976, 27, (4), pp. 407413.
    14. 14)
      • 14. Stinson, D.R.: ‘An explication of secret sharing schemes’, Des. Codes Cryptography, 1992, 2, pp. 357390.
    15. 15)
      • 15. Shapley, L.S.: ‘Simple games: an outline of the descriptive theory’, Behav. Sci., 1962, 7, (1), pp. 5966.
    16. 16)
      • 16. Martin, K.M.: ‘New secret sharing schemes from old’, J. Comb. Math. Comb. Comput., 1993, 14, pp. 6577.
    17. 17)
      • 17. Martínez.Moro, E., Mozo.Fernández, J., Munuera, C.: ‘Compounding secret sharing schemes’, Aust. J. Comb., 2004, 30, pp. 277290.
    18. 18)
      • 18. Márquez.Corbella, I., Martínez.Moro, E., Suárez.Canedo, E.: ‘On the composition of secret sharing schemes related to codes’, Discrete Math., Algorithms Appl., 2014, 6, (1), p. 1450013.
    19. 19)
      • 19. Maurer, U.: ‘Secure multi-party computation made simple’, Discrete Appl. Math., 2006, 154, (2), pp. 370381.
    20. 20)
      • 20. Nikov, V., Nikova, S., Preneel, B.: ‘Multi-party computation from any linear secret sharing scheme unconditionally secure against adaptive adversary: the zeroerror case’. Int. Conf. on Applied Cryptography and Network Security, Kunming, People's Republic of China, 2003, pp. 115.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2019.0210
Loading

Related content

content/journals/10.1049/iet-ifs.2019.0210
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address