Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fingerprint image quality assessment based on BP neural network with hierarchical clustering

Fingerprint image quality assessment is important because the good performance of the minutiae-based matching algorithm is heavily dependent on fingerprint images with high quality. Many efforts have been made in existing methods, but most methods either use full fingerprint images or use local areas and involve subjective judgments. Unlike previous methods, the proposed method considers both local and global assessments. Local feature vectors are extracted from the fingerprint image block for hierarchical clustering, and the results are used as target outputs of the back-propagation (BP) neural network without any subjective judgments. Global feature vectors based on the local quality assessment results are used for hierarchical clustering and fed into the BP neural network that calculates the overall error rate of genuine and imposter errors to achieve global quality assessment. Furthermore, the minutiae quality assessment method is also proposed and incorporated into the minutiae-based matching algorithm. The experimental results based on the FVC2002 and FVC2004 databases show that the proposed methods can effectively assess the quality of fingerprint images and ensure the overall improvement of matching performance.

References

    1. 1)
      • 20. Lim, E., Toh, K.A., Suganthan, P., et al: ‘Fingerprint image quality analysis’. 2004 Int. Conf. on Image Processing, 2004 (ICIP'04), Singapore, Singapore, 2004, vol. 2, pp. 12411244.
    2. 2)
      • 25. Mojena, R.: ‘Hierarchical grouping methods and stopping rules: an evaluation’, Comput. J., 1977, 20, (4), pp. 359363.
    3. 3)
      • 16. Feng, J., Jain, A.K.: ‘Fingerprint reconstruction: from minutiae to phase’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 33, (2), pp. 209223.
    4. 4)
      • 15. Alonso Fernandez, F., Fierrez, J., Ortega Garcia, J.: ‘Quality measures in biometric systems’, IEEE Secur. Priv., 2011, 10, (6), pp. 5262.
    5. 5)
      • 26. Milligan, G.W., Cooper, M.C.: ‘An examination of procedures for determining the number of clusters in a data set’, Psychometrika, 1985, 50, (2), pp. 159179.
    6. 6)
      • 14. Sandip, S.P., Zope, P.: ‘Selective review of fingerprint enhancement, classification and matching techniques’. 2015 IEEE Bombay Section Symp. (IBSS), Mumbai, India, 2015, pp. 16.
    7. 7)
      • 31. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2002: second fingerprint verification competition’. Object Recognition Supported by User Interaction for Service Robots, Quebec, Canada, 2002, vol. 3, pp. 811814.
    8. 8)
      • 11. Aastrup Olsen, M., Tabassi, E., Makarov, A., et al: ‘Self-organizing maps for fingerprint image quality assessment’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 2013, pp. 138145.
    9. 9)
      • 17. Sharma, R.P., Dey, S.: ‘Fingerprint image quality assessment and scoring’. Int. Conf. on Mining Intelligence and Knowledge Exploration, Hyderabad, India, 2017, pp. 156167.
    10. 10)
      • 23. Zhu, E., Guo, X., Yin, J.: ‘Walking to singular points of fingerprints’, Pattern Recognit., 2016, 56, pp. 116128.
    11. 11)
      • 10. Tabassi, E.: ‘NIST Fingerprint Image Quality (NFIQ) Compliance Test’, US Department of Commerce, National Institute of Standards and Technology, 2005.
    12. 12)
      • 5. Ko, K.: ‘User's guide to NIST biometric image software (NBIS)’, NIST Interagency/Internal Report (NISTIR) – 7392, 2007.
    13. 13)
      • 30. Kůrková, V.: ‘Kolmogorov's theorem and multilayer neural networks’, Neural Netw., 1992, 5, (3), pp. 501506.
    14. 14)
      • 28. Yoon, S., Jain, A.K.: ‘Longitudinal study of fingerprint recognition’, Proc. Natl. Acad. Sci. USA, 2015, 112, (28), pp. 85558560.
    15. 15)
      • 12. Yan, J., Dai, X., Zhao, Q., et al: ‘A CNN-based fingerprint image quality assessment method’. Chinese Conf. on Biometric Recognition, Shenzhen, People's Republic of China, 2017, pp. 344352.
    16. 16)
      • 9. Parziale, G., Niel, A.: ‘A fingerprint matching using minutiae triangulation’. Int. Conf. on Biometric Authentication, Shanghai, People's Republic of China, 2004, pp. 241248.
    17. 17)
      • 29. Yao, Z., Le Bars, J.M., Charrier, C., et al: ‘Literature review of fingerprint quality assessment and its evaluation’, IET Biometrics, 2016, 5, (3), pp. 243251.
    18. 18)
      • 7. Tico, M., Kuosmanen, P.: ‘Fingerprint matching using an orientation-based minutia descriptor’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (8), pp. 10091014.
    19. 19)
      • 24. Ward, J.HJr.: ‘Hierarchical grouping to optimize an objective function’, J. Am. Stat. Assoc., 1963, 58, (301), pp. 236244.
    20. 20)
      • 33. Alshehri, H., Hussain, M., Aboalsamh, H., et al: ‘Cross-sensor fingerprint matching method based on orientation, gradient, and Gabor-HoG descriptors with score level fusion’, IEEE Access, 2018, 6, (99), pp. 11.
    21. 21)
      • 2. Ali, M.M., Mahale, V.H., Yannawar, P., et al: ‘Overview of fingerprint recognition system’. 2016 Int. Conf. on Electrical, Electronics, and Optimization Techniques (ICEEOT) IEEE, Chennai, India, 2016, pp. 13341338.
    22. 22)
      • 27. Peralta, D., Triguero, I., García, S., et al: ‘On the use of convolutional neural networks for robust classification of multiple fingerprint captures’, Int. J. Intell. Syst., 2018, 33, (1), pp. 213230.
    23. 23)
      • 21. Li, X., Wang, R., Li, M., et al: ‘A hybrid quality estimation algorithm for fingerprint images’. Chinese Conf. on Biometric Recognition, Chengdu, People's Republic of China, 2016, pp. 214223.
    24. 24)
      • 18. Yoon, S.: ‘Fingerprint recognition: models and applications’, Computer Science-Doctor of Philosophy, Michigan State University, 2014).
    25. 25)
      • 3. Peralta, D., Galar, M., Triguero, I., et al: ‘A survey on fingerprint minutiae-based local matching for verification and identification: taxonomy and experimental evaluation’, Inf. Sci., 2015, 315, pp. 6787.
    26. 26)
      • 8. Medina Pérez, M.A., Loyola González, O., Gutierrez Rodríguez, A.E., et al: ‘Introducing an experimental framework in C# for fingerprint recognition’. Mexican Conf. on Pattern Recognition, Cancun, Mexico, 2014, pp. 132141.
    27. 27)
      • 19. Lim, E., Jiang, X., Yau, W.: ‘Fingerprint quality and validity analysis’. Proc. 2002 Int. Conf. on Image Processing, Rochester, NY, USA, 2002, vol. 1, pp. II.
    28. 28)
      • 13. Ali, M.M., Gaikwad, A.: ‘Multimodal biometrics enhancement recognition system based on fusion of fingerprint and palmprint: a review’, Glob. J. Comput. Sci. Technol., 2016, 16, pp. 1326.
    29. 29)
      • 6. Jiang, X., Yau, W.Y.: ‘Fingerprint minutiae matching based on the local and global structures’. Proc. 15th Int. Conf. on Pattern Recognition (ICPR-2000), Barcelona, Spain, 2000, vol. 2, pp. 10381041.
    30. 30)
      • 32. Maio, D., Maltoni, D., Cappelli, R., et al: ‘FVC2004: third fingerprint verification competition’, Lect. Notes Comput. Sci., 2004, 3072, (2), pp. 17.
    31. 31)
      • 22. Wu, C.J., Chiu, C.T.: ‘Dry fingerprint detection for multiple image resolutions using ridge features’. 2017 IEEE Int. Workshop on Signal Processing Systems (SiPS) IEEE, Lorient, France, 2017, pp. 15.
    32. 32)
      • 1. Maltoni, D., Maio, D., Jain, A.K., et al: ‘Handbook of fingerprint recognition’ (Springer Science & Business Media, London, UK, 2009).
    33. 33)
      • 4. Teixeira, R.F., Leite, N.J.: ‘A new framework for quality assessment of high-resolution fingerprint images’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 39, (10), pp. 19051917.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2019.0040
Loading

Related content

content/journals/10.1049/iet-ifs.2019.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address