http://iet.metastore.ingenta.com
1887

Multi-key homomorphic authenticators

Multi-key homomorphic authenticators

For access to this article, please select a purchase option:

Buy eFirst article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Homomorphic authenticators (HAs) enable a client to authenticate a large collection of data elements and outsource them, along with the corresponding authenticators, to an untrusted server. At any later point, the server can generate a short authenticator vouching for the correctness of the output y of a function f computed on the outsourced data, i.e. . The notion of HAs studied so far, however, only supports executions of computations over data authenticated by a single user. Motivated by realistic scenarios in which large datasets include data provided by multiple users, we study the concept of multi-key homomorphic authenticators. In a nutshell, multi-key HAs are like HAs with the extra feature of allowing the holder of public evaluation keys to compute on data authenticated under different secret keys. In this paper, we introduce and formally define multi-key HAs. Secondly, we propose a construction of a multi-key homomorphic signature based on standard lattices and supporting the evaluation of circuits of bounded polynomial depth. Thirdly, we provide a construction of multi-key homomorphic MACs based only on pseudorandom functions and supporting the evaluation of low-degree arithmetic circuits.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2018.5341
Loading

Related content

content/journals/10.1049/iet-ifs.2018.5341
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address