http://iet.metastore.ingenta.com
1887

How to construct a verifiable multi-secret sharing scheme based on graded encoding schemes

How to construct a verifiable multi-secret sharing scheme based on graded encoding schemes

For access to this article, please select a purchase option:

Buy eFirst article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In a verifiable multi-secret sharing scheme, a dealer distributes multiple secrets between a group of participants and also additional information is given that allows each participant to check whether his share is valid. In this study, the authors present a novel verifiable multi-secret sharing (VMSS) scheme with general access structure using monotone span programs, which its security is based on graded encoding schemes. More precisely, they reduce the hardness of graded decision-Diffie–Hellman problem to the computational security of the authors’ scheme in the standard model. To the best of the authors’ knowledge, this is the first study to present a VMSS scheme based on graded encoding schemes.

References

    1. 1)
      • 1. Ghasemi, R., Safi, A., Dehkordi, M.H.: ‘Efficient multi-secret sharing scheme using new proposed computational security model’, Int. J. Commun. Syst., 2017, 31, (1), p. e3399.
    2. 2)
      • 2. Peng, Q., Tian, Y.: ‘Publicly verifiable secret sharing scheme and its application with almost optimal information rate’, Sec. Commun. Netw., 2016, 9, (18), pp. 62276238.
    3. 3)
      • 3. Qin, H., Dai, Y., Wang, Z.: ‘A secret sharing scheme based on (t, n) threshold and adversary structure’, Int. J. Inf. Secur., 2009, 8, (5), pp. 379385.
    4. 4)
      • 4. Liu, Y.: ‘Linear (k, n) secret sharing scheme with cheating detection’, Sec. Commun. Netw., 2016, 9, (13), pp. 21152121.
    5. 5)
      • 5. Asmuth, C., Bloom, J.: ‘A modular approach to key safeguarding’, IEEE Trans. Inf. Theory, 1983, 29, (2), pp. 208210.
    6. 6)
      • 6. Liu, Y., Harn, L., Chang, C.-C.: ‘A novel verifiable secret sharing mechanism using theory of numbers and a method for sharing secrets’, Int. J. Commun. Syst., 2015, 28, (7), pp. 12821292.
    7. 7)
      • 7. Cramer, R., Damgård, I., Maurer, U.: ‘General secure multi-party computation from any linear secret-sharing scheme’. Advances in Cryptology-EUROCRYPT, 2000, pp. 316334.
    8. 8)
      • 8. Dehkordi, M.H., Mashhadi, S., Oraei, H.: ‘A proactive multi stage secret sharing scheme for any given access structure’, Wirel. Pers. Commun., 2019, 104, (1), pp. 491503.
    9. 9)
      • 9. Karchmer, M., Wigdersonm, A.: ‘On span programs’. Structure in Complexity Theory Conf., 1993, pp. 102111.
    10. 10)
      • 10. Liu, M., Xiao, L., Zhang, Z.: ‘Linear multi-secret sharing schemes based on multi-party computation’, Finite Fields Appl., 2006, 12, (4), pp. 704713.
    11. 11)
      • 11. Hsu, C.F., Cheng, Q., Tang, X., et al: ‘An ideal multi-secret sharing scheme based on MSP’, Inf. Sci., 2011, 181, (7), pp. 14031409.
    12. 12)
      • 12. Boneh, D., Silverberg, A.: ‘Applications of multilinear forms to cryptography’, Contemp. Math., 2003, 324, (1), pp. 7190.
    13. 13)
      • 13. Garg, S., Gentry, C., Halevi, S.: ‘Candidate multilinear maps from ideal lattices’. Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, Berlin, Heidelberg, 2013, pp. 117.
    14. 14)
      • 14. Lin, H., Tessaro, S.: ‘Indistinguishability obfuscation from trilinear maps and block-wise local PRGs’. Annual Int. Cryptology Conf., Cham, 2017, pp. 630660.
    15. 15)
      • 15. Ananth, P., Sahai, A.: ‘Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps’. Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, Cham, 2017, pp. 152181.
    16. 16)
      • 16. Garg, S., Gentry, C., Halevi, S., et al: ‘Candidate indistinguishability obfuscation and functional encryption for all circuits’, SIAM J. Comput., 2016, 45, (3), pp. 882929.
    17. 17)
      • 17. Ananth, P., Jain, A., Sahai, A.: ‘Robust transforming combiners from indistinguishability obfuscation to functional encryption’. Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, Cham, 2017, pp. 91121.
    18. 18)
      • 18. Garg, S., Gentry, C., Sahai, A., et al: ‘Witness encryption and its applications’. Proc. of the Forty-fifth Annual ACM Symp. on Theory of Computing, ACM, 2013, pp. 467476.
    19. 19)
      • 19. Gentry, C., Lewko, A., Waters, B.: ‘Witness encryption from instance independent assumptions’. Int. Cryptology Conf., Berlin, Heidelberg, 2014, pp. 426443.
    20. 20)
      • 20. Garg, S., Gentry, C., Halevi, S., et al: ‘On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input’, Algorithmica, 2017, 79, (4), pp. 13531373.
    21. 21)
      • 21. Ruiz, A., Villar, J.L.: ‘Publicly verifiable secret sharing from Paillier's cryptosystem’, WEWoRC, 2005, 74, pp. 98108.
    22. 22)
      • 22. Heidarvand, S., Villar, J.L.: ‘Public verifiability from pairings in secret sharing schemes’. Int. Workshop on Selected Areas in Cryptography, Berlin, Heidelberg, 2009, pp. 294308.
    23. 23)
      • 23. Jhanwar, M.P.: ‘A practical (non-interactive) publicly verifiable secret sharing scheme’. Int. Conf. on Information Security Practice and Experience, Berlin, Heidelberg, 2011, pp. 273287.
    24. 24)
      • 24. Wu, T.Y., Tseng, Y.M.: ‘A pairing-based publicly verifiable secret sharing scheme’, J. Syst. Sci. Complex., 2011, 24, (1), pp. 186194.
    25. 25)
      • 25. Gan, Y., Wang, L., Wang, L., et al: ‘Publicly verifiable secret sharing scheme with provable security against chosen secret attacks’, Int. J. Distrib. Sens. Netw., 2013, 9, (2), pp. 19.
    26. 26)
      • 26. Wu, T.Y., Tseng, Y.M.: ‘Publicly verifiable multi-secret sharing scheme from bilinear pairings’, IET Inf. Sec., 2013, 7, (3), pp. 239246.
    27. 27)
      • 27. Herranz, J., Ruiz, A., Saez, G.: ‘Sharing many secrets with computational provable security’, Inf. Process. Lett., 2013, 113, (14), pp. 572579.
    28. 28)
      • 28. Mashhadi, S.: ‘Computationally-secure multiple secret sharing: models, schemes, and formal security analysis’, ISC Int. J. Inf. Sec., 2015, 7, (2), pp. 9199.
    29. 29)
      • 29. Rajabi, B., Eslami, Z.: ‘A verifiable threshold secret sharing scheme based on lattices’, Inf. Sci., 2018, https://doi.org/10.1016/j.ins.2018.11.004.
    30. 30)
      • 30. Shen, J., Liu, D., Sun, X., et al: ‘Efficient cloud-aided verifiable secret sharing scheme with batch verification for smart cities’, Future Gener. Comput. Syst., 2018, https://doi.org/10.1016/j.future.2018.10.049.
    31. 31)
      • 31. Peng, Q., Tian, Y.: ‘A publicly verifiable secret sharing scheme based on multilinear Diffie-Hellman assumption’, Int. J. Netw. Sec., 2016, 18, (6), pp. 11921200.
    32. 32)
      • 32. Hsu, C.F., Cui, G.H., Cheng, Q., et al: ‘A novel linear multi-secret sharing scheme for group communication in wireless mesh networks’, J. Netw. Comput. Appl., 2011, 34, (2), pp. 464468.
    33. 33)
      • 33. Hsu, C.F., Harn, L., Cui, G.: ‘An ideal multi-secret sharing scheme based on connectivity of graphs’, Wirel. Pers. Commun., 2014, 77, (1), pp. 383394.
    34. 34)
      • 34. Xiao, L., Liu, M.: ‘Linear multi-secret sharing schemes’, Sci. China F: Inf. Sci., 2005, 48, (1), pp. 125136.
    35. 35)
      • 35. Farshim, P., Hesse, J., Hofheinz, D., et al: ‘Graded encoding schemes from obfuscation’. IACR Int. Workshop on Public Key Cryptography, Cham, 2018, pp. 371400.
    36. 36)
      • 36. Garg, S.: ‘Candidate Multilinear Maps’. PhD thesis, University of California Los Angeles, 2013.
    37. 37)
      • 37. Langlois, A., Stehlé, D., Steinfeld, R.: ‘GGHLite: more efficient multilinear maps from ideal lattices’. Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, Berlin, Heidelberg, 2014, pp. 239256.
    38. 38)
      • 38. Coron, J.-S., Lepoint, T., Tibouchi, M.: ‘New multilinear maps over the integers’. Annual Cryptology Conf., Berlin, Heidelberg, 2015, pp. 267286.
    39. 39)
      • 39. Hu, Y., Jia, H.: ‘Cryptanalysis of GGH map’. Annual Int. Conf. on the Theory and Applications of Cryptographic Techniques, Berlin, Heidelberg, 2016, pp. 537565.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2018.5306
Loading

Related content

content/journals/10.1049/iet-ifs.2018.5306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address