ESR analysis over ST-MRC multi-input multi-output Nakagami fading channels

ESR analysis over ST-MRC multi-input multi-output Nakagami fading channels

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Different from conventional key-based cryptography schemes, physical-layer security (PLS) techniques have drawn much attention recently to realise unconditional security from the information theory perspective. As an important performance metric in PLS, the ergodic secrecy rate (ESR) for a multi-input multi-output wireless communication network over a Nakagami fading channel is analysed. The network is consisted of a multi-antenna transmitter (Alice), a multi-antenna legitimate receiver (Bob), and a multi-antenna eavesdropper (Eve). By using the selective transmission (ST) at Alice and the maximum ratio combining (MRC) at Bob and Eve, an exact expression of the ESR is derived. However, due to the infinite summation, it is very hard to evaluate the ESR performance. To reduce computational complexity and obtain more insights, a lower bound of the ESR is then obtained, which is in a closed form. As special cases, the lower bounds of the ESR for the signal-antenna scenario and Rayleigh fading channel are also obtained, respectively. Numerical results show that the derived expressions of the ESR and its lower bound are very accurate to evaluate system performance.


    1. 1)
      • 1. Chen, X., Ng, D.W.K., Gerstacker, W.H., et al: ‘A survey on multiple-antenna techniques for physical layer security’, IEEE Commun. Surv. Tutorials, 2017, 19, (2), pp. 10271053.
    2. 2)
      • 2. Shiu, Y.-S., Chang, S.Y., Wu, H.-C., et al: ‘Physical layer security in wireless networks: a tutorial’, IEEE Wirel. Commun., 2011, 18, (2), pp. 6674.
    3. 3)
      • 3. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell Syst. Tech. J., 1949, 28, (4), pp. 656715.
    4. 4)
      • 4. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    5. 5)
      • 5. Nguyen, V.-D., Hoang, T.M., Shin, O.-S.: ‘Secrecy capacity of the primary system in a cognitive radio network’, IEEE Trans. Veh. Technol., 2015, 64, (8), pp. 38343843.
    6. 6)
      • 6. Lin, S.-C., Lin, C.-L.: ‘On secrecy capacity of fast fading MIMOME wiretap channels with statistical CSIT’, IEEE Trans. Wirel. Commun., 2014, 13, (6), pp. 32933306.
    7. 7)
      • 7. Mishra, M.K., Sood, N., Sharma, A.K.: ‘Efficient BER analysis of OFDM system over Nakagami-m fading channel’, Int. J. Ad. Sci. Technol., 2011, 37, pp. 3746.
    8. 8)
      • 8. Tang, C., Pan, G., Li, T.: ‘Secrecy outage analysis of underlay cognitive radio unit over Nakagami-m fading channels’, IEEE Wirel. Commun. Lett., 2014, 3, (6), pp. 609612.
    9. 9)
      • 9. Zhao, R., Yuan, Y., Fan, L., et al: ‘Secrecy performance analysis of cognitive decode-and-forward relay networks in Nakagami-m fading channels’, IEEE Trans. Commun., 2017, 65, (2), pp. 549562.
    10. 10)
      • 10. Nguyen, T.V., Ngo, H.Q., Shin, H.: ‘Secrecy capacity of Nakagami-m fading channels’. Proc. Int. Techn. Conf. Circuits Syst., Comput., Commun., Jeju Island, Korea, July 2009, pp. 12621265.
    11. 11)
      • 11. Sarkar, M.Z.I., Ratnarajah, T., Sellathurai, M.: ‘Secrecy capacity of Nakagami-m fading wireless channels in the presence of multiple eavesdroppres’. Proc. 43th Asilomar Conf. Sig., Syst., Comput., Pacific Grove, California, USA, November 2009, pp. 829833.
    12. 12)
      • 12. Lei, H., Ansari, I.S., Pan, G., et al: ‘Secrecy capacity analysis over α-μ fading channels’, IEEE Commun. Lett., 2017, 21, (6), pp. 14451448.
    13. 13)
      • 13. Yang, N., Yeoh, P.L., Elkashlan, M., et al: ‘Transmit antenna selection for security enhancement in MIMO wiretap channels’, IEEE Trans. Commun., 2013, 61, (1), pp. 144154.
    14. 14)
      • 14. Khisti, A., Wornell, G.W.: ‘Secure transmission with multiple antennas I: The MISOME wiretap channel’, IEEE Trans. Inf. Theory, 2010, 56, (7), pp. 30883104.
    15. 15)
      • 15. Yang, N., Yeoh, P.L., Elkashlan, M., et al: ‘MIMO wiretap channels: secure transmission using transmit antenna selection and receive generalized selection combining’, IEEE Commun. Lett., 2013, 17, (9), pp. 17541757.
    16. 16)
      • 16. Xiong, J., Tang, Y., Ma, D., et al: ‘Secrecy performance analysis for TAS-MRC system with imperfect feedback’, IEEE Trans. Inf. Forensics Secur., 2015, 10, (8), pp. 16171629.
    17. 17)
      • 17. Simon, M.K., Alouini, M.-S.: ‘Digital communication over fading channels’ (John Wiley and Sons, Hoboken, 2000, 2nd edn. 2005).
    18. 18)
      • 18. Chen, Z., Chi, Z., Li, Y., et al: ‘Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels’, IEEE Trans. Wirel. Commun., 2009, 8, (1), pp. 424431.
    19. 19)
      • 19. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Elsevier, Boston, 1980, 7th edn. 2007).
    20. 20)
      • 20. Alouini, M.-S., Goldsmith, A. J.: ‘Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques’, IEEE Trans. Veh. Technol., 1999, 48, (4), pp. 11651181.

Related content

This is a required field
Please enter a valid email address