Security evaluation and design elements for a class of randomised encryptions

Security evaluation and design elements for a class of randomised encryptions

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers a class of randomised encryption techniques, where the encrypted data suffers from noise through transmission over a communication channel. It focuses on the encoding–encryption framework, where the data is first encoded using error correction coding for reliability, then encrypted with a stream cipher. A dedicated homophonic encoder is added to enhance the protection of the stream cipher key, on which relies the security of all the system transmissions. This study presents a security evaluation of such systems in a chosen plaintext attack scenario, which shows that the computational complexity security is lower bounded by the related LPN (learning from parity with noise) complexity in both the average and worst cases. This gives guidelines to construct a dedicated homophonic encoder which maximises the complexity of the underlying LPN problem for a given encoding overhead. A generic homophonic coding strategy that fulfils the proposed design criteria is then given, which thus both enhances security while minimising the induced overhead. Finally, a comparison of encryption schemes based on the LPN problem with and without homophonic coding is considered.

Related content

This is a required field
Please enter a valid email address