http://iet.metastore.ingenta.com
1887

Server notaries: a complementary approach to the web PKI trust model

Server notaries: a complementary approach to the web PKI trust model

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Secure socket layer/transport layer security (TLS) is the de facto protocol for providing secure communications over the Internet. It relies on the web PKI model for authentication and secure key exchange. Despite its relatively successful past, the number of web PKI incidents observed have increased recently. These incidents revealed the risks of forged certificates issued by certificate authorities without the consent of the domain owners. Several solutions have been proposed to solve this problem but no solution has yet received widespread adoption due to complexity and deployability issues. In this study, the authors propose an effective solution for this problem that allows a TLS server to detect a certificate substitution attack against its domain across the Internet. The proposed solution is practical and allows a smooth and gradual transition. They also give a triangulation algorithm enabling the server to find out the origin of the attack. They conducted simulation experiments using real-world BGP data and showed that their proposal can be effective for detecting and locating attacks using relatively few vantage points over the Internet.

References

    1. 1)
      • 1. Freier, A., Karlton, P., Kocher, P.: ‘The secure sockets layer (SSL) protocol version 3.0’, RFC 6101 (Historic), 2011. Available at http://www.ietf.org/rfc/rfc6101.txt.
    2. 2)
      • 2. Dierks, T., Rescorla, E.: ‘The transport layer security (TLS) protocol version 1.2’, RFC 5246 (Proposed Standard), 2008, updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627. Available at http://www.ietf.org/rfc/rfc5246.txt.
    3. 3)
      • 3. Cooper, D., Santesson, S., Farrell, S., et al: ‘Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile’, RFC 5280 (Proposed Standard), 2008, updated by RFC 6818. Available at http://www.ietf.org/rfc/rfc5280.txt.
    4. 4)
      • 4. Eckersley, P., Burns, J.: ‘The (decentralized) SSL observatory’. Invited talk at 20th USENIX Security Symp., 2011. Available at https://www.usenix.org/conference/usenix-security-11/decentralized-sslobservatory.
    5. 5)
      • 5. Langley, A.: ‘Further improving digital certificate security’, Google Online Security Blog, 2013. Available at http://googleonlinesecurity.blogspot.com/2013/12/further-improving-digital-certificate.html.
    6. 6)
      • 6. Langley, A.: ‘Maintaining digital certificate security’, Google Online Security Blog, 2014. Available at http://googleonlinesecurity.blogspot.com/2014/07/maintaining-digital-certificate-security.html.
    7. 7)
      • 7. Langley, A.: ‘Maintaining digital certificate security’, Google Online Security Blog, 2015. Available at http://googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-certificate-security.html.
    8. 8)
      • 8. Langley, A.: ‘Enhancing digital certificate security’, Google Online Security Blog, 2013. Available at http://googleonlinesecurity.blogspot.com/2013/01/enhancing-digital-certificate-security.html.
    9. 9)
      • 9. VASCO: ‘Diginotar reports security incident’, VASCO Data Security Press Overview, 2011. Available at https://www.vasco.com/company/about_vasco/press_room/news_archive/2011/news_diginotar_reports_security_incident.aspx.
    10. 10)
      • 10. Comodo: ‘Comodo SSL affiliate the recent RA compromise’, Comodo Security Blog, 2011. Available at https://blog.comodo.com/other/the-recentra-compromise/.
    11. 11)
      • 11. Leyden, J.: ‘Trustwave admits crafting SSL snooping certificate: allowing bosses to spy on staff was wrong, says security biz’, The Register, 2012. Available at http://www.theregister.co.uk/2012/02/09/tustwave_disavows_mitm_digital_cert/.
    12. 12)
      • 12. Singel, R.: ‘Law enforcement appliance subverts SSL’, Wired News, 2010. Available at http://www.wired.com/2010/03/packet-forensics/.
    13. 13)
      • 13. Soghoian, C., Stamm, S.: ‘Certified lies: detecting and defeating government interception attacks against SSL’, Financ. Cryptogr. Data Secur., 2011, pp. 250259.
    14. 14)
      • 14. Dierks, T., Rescorla, E.: ‘Public key pinning extension for HTTP’, RFC 7469 (Proposed Standard), 2015. Available at https://tools.ietf.org/html/rfc7469.
    15. 15)
      • 15. Wendlandt, D., Andersen, D.G., Perrig, A.: ‘Perspectives: improving SSH-style host authentication with multi-path probing’. USENIX Annual Technical Conf., 2008, pp. 321334.
    16. 16)
      • 16. Marlinspike, M.: ‘Convergence’, 2012. http://convergence.io.
    17. 17)
      • 17. Schlyter, J., Hoffman, P.: ‘The DNS-based authentication of named entities (DANE) transport layer security (TLS) protocol: TLSA’, 2012.
    18. 18)
      • 18. EFF: ‘The sovereign keys project’, 2008. https://www.eff.org/sovereign-keys.
    19. 19)
      • 19. Langley, A., Kasper, E., Laurie, B.:‘Certificate Transparency’, 2013. Available at https://tools.ietf.org/html/rfc6962.
    20. 20)
      • 20. Clark, J., van Oorschot, P.C.: ‘SSL and HTTPS: revisiting past challenges and evaluating certificate trust model enhancements’. IEEE Symp. on Security and Privacy (SP), 2013, pp. 511525.
    21. 21)
      • 21. Laurie, B.: ‘Certificate transparency public, verifiable, append-only logs’, ACM Queue Secur., 2014, 12, (8). Available at http://queue.acm.org/detail.cfm?id=2668154.
    22. 22)
      • 22. Alicherry, M., Keromytis, A.D.: ‘Doublecheck: multi-path verification against man-in-the-middle attacks’. IEEE Symp. Computers and Communications, 2009, pp. 557563.
    23. 23)
      • 23. Holz, R., Riedmaier, T., Kammenhuber, N., et al: ‘X. 509 forensics: detecting and localising the SSL/TLS men-in-the-middle’, Comput. Secur., ESORICS 2012, 2012, pp. 217234.
    24. 24)
      • 24. ‘University of Oregon route views project’, 2015. Available at http://www.routeviews.org/.
    25. 25)
      • 25. NLANR: ‘The national laboratory for advanced network research’, 2006. Available at http://www.caida.org/projects/nlanr/.
    26. 26)
      • 26. CAIDA: ‘Center for applied Internet data analysis’, 2015. Available at http://www.caida.org.
    27. 27)
      • 27. NetGeo: ‘The Internet geographic database’, 2015. Available at http://www.caida.org/tools/utilities/netgeo/.
    28. 28)
      • 28. CAIDA: ‘AS relationships’, 2015. Available at http://www.caida.org/data/as-relationships/.
    29. 29)
      • 29. ‘Routeviews peering status report’, 2015. Available at http://www.routeviews.org/peers/peering-status-by-as.html.
    30. 30)
      • 30. Faloutsos, M., Faloutsos, P., Faloutsos, C.: ‘On power-law relationships of the Internet topology’, SIGCOMM Comput. Commun. Rev., 1999, 29, (4), pp. 251262.
    31. 31)
      • 31. Available at. Available at http://doi.acm.org/10.1145/316194.316229.
    32. 32)
      • 32. Luckie, M., Huffaker, B., Dhamdhere, A., et al: ‘AS relationships, customer cones, and validation’. Proc. 2013 Conf. Internet Measurement Conf., 2013, pp. 243256.
    33. 33)
      • 33. Gao, L.: ‘On inferring autonomous system relationships in the Internet’, IEEE/ACM Trans. Netw., 2001, 9, (6). Available at http://dx.doi.org/10.1109/90.974527.
    34. 34)
      • 34. Rekhter, Y., Li, T., Hares, S.: ‘A border gateway protocol 4 (BGP-4)’, RFC 4271 (Draft Standard), 2006, updated by RFCs 6286, 6608, 6793, 7606, 7607. Available at http://www.ietf.org/rfc/rfc4271.txt.
    35. 35)
      • 35. Kranch, M., Bonneau, J.: ‘Upgrading HTTPS in mid-air: an empirical study of strict transport security and key pinning’, 2015.
    36. 36)
      • 36. TACK: ‘Trust assertions for certificate keys’, 2008. Available at http://tack.io.
    37. 37)
      • 37. Langley, A.: ‘Public key pinning’, 2011. Available at https://www.imperialviolet.org/2011/05/04/pinning.html.
    38. 38)
      • 38. ‘DetecTor’, 2009. Available at http://www.detector.io.
    39. 39)
      • 39. ‘The ICSI certificate notary’, 2015. Available at https://notary.icsi.berkeley.edu/.
    40. 40)
      • 40. EFF: ‘The EFF SSL observatory’, 2015. Available at https://www.eff.org/observatory.
    41. 41)
      • 41. Huang, L.S., Rice, A., Ellingsen, E., et al: ‘Analyzing forged SSL certificates in the wild’. IEEE Symp. Security and Privacy (SP), 2014, pp. 8397.
    42. 42)
      • 42. Slepak, G.: ‘The trouble with certificate transparency’, 2014. Available at https://blog.okturtles.com/2014/09/the-trouble-withcertificate-transparency/.
    43. 43)
      • 43. Melara, M.S., Blankstein, A., Bonneau, J., et al: ‘CONIKS: bringing key transparency to end users’. 24th USENIX Security Symp. (USENIX Security 15), 2015. Available at https://www.usenix.org/conference/usenixsecurity15/technicalsessions/presentation/melara.
    44. 44)
      • 44. Melara, M.: ‘Why making Johnny's key management transparent is so challenging’, 2016. Available at https://freedom-to-tinker.com/2016/03/31/why-making-johnnys-key-management-transparent-is-so-challenging/.
    45. 45)
      • 45. Etemad, M., Küpçü, A.: ‘Efficient key authentication service for secure end-to-end communications’. Provable Security: Ninth Int. Conf. ProvSec 2015 Proc., Kanazawa, Japan, 24–26 November 2015, pp. 183197.
    46. 46)
      • 46. O'Neill, M., Heidbrink, S., Ruoti, S., et al: ‘Trustbase: an architecture to repair and strengthen certificate-based authentication’. 26th USENIX Security Symp. (USENIX Security 17), 2017, pp. 609624. Available at https://www.usenix.org/conference/usenixsecurity17/technicalsessions/presentation/oneill.
    47. 47)
      • 47. Syta, E., Tamas, I., Visher, D., et al: ‘Keeping authorities ‘honest or bust’ with decentralized witness cosigning’. 2016 IEEE Symp. Security and Privacy (SP), 2016, pp. 526545.
    48. 48)
      • 48. Brubaker, C., Jana, S., Ray, B., et al: ‘Using frankencerts for automated adversarial testing of certificate validation in SSL/TLS implementations’. Proc. 2014 IEEE Symp. Security and Privacy, 2014, pp. 114129.
    49. 49)
      • 49. O'Neill, M., Ruoti, S., Seamons, K., et al: ‘TLS proxies: friend or foe?’. Proc. 2016 Internet Measurement Conf., 2016, pp. 551557.
    50. 50)
      • 50. Liu, Y., Tome, W., Zhang, L., et al: ‘An end-to-end measurement of certificate revocation in the web's PKI’. Proc. 2015 Internet Measurement Conf., 2015, pp. 183196.
    51. 51)
      • 51. Gustafsson, J., Overier, G., Arlitt, M., et al: ‘A first look at the CT landscape: certificate transparency logs in practice’. Passive and Active Measurement: 18th Int. Conf. PAM 2017 Proc., Sydney, NSW, Australia, 30-31 March 2017, pp. 8799.
    52. 52)
      • 52. Fadai, T., Schrittwieser, S., Kieseberg, P., et al: ‘Trust me, I'm a root CA! analyzing SSL root CAs in modern browsers and operating systems’. 2015 Tenth Int. Conf. Availability, Reliability and Security, 2015, pp. 174179.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2016.0611
Loading

Related content

content/journals/10.1049/iet-ifs.2016.0611
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address