Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Revisiting impossible differentials of MARS-like structures

The MARS-like structure is a generalised Feistel structure. In 2015, Xue and Lai proved that there always exist (3n − 1)-round impossible differentials of MARS-like structures with n subblocks, as long as the round function is bijective. In this study, the length of the impossible differentials is extended by 1 round supposing that the MARS-like structure adopts the bijective round function of SP-type, i.e. the round function is decomposed into a substitution layer followed by a linear diffusion layer. It is surprised that such result is irrelevant to both the specifics of the S-boxes in the substitution layer and the specifics of the linear transformations in the diffusion layer.

References

    1. 1)
      • 2. Biham, E., Biryukov, A., Shamir, A.: ‘Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials’. EUROCRYPT 1999, 1999(LNCS, 1592), pp. 1223.
    2. 2)
      • 16. Kelsey, J., Kohno, T., Schneier, B.: ‘Amplified boomerang attacks against reduced-round MARS and serpent’. FSE 2000, Fast Software Encryption, 2000(LNCS, 1978), pp. 7593.
    3. 3)
      • 17. Moriai, S., Vaudenay, S.: ‘On the Pseudorandomness of top-level schemes of block ciphers’. Proc. ASIACRYPT 2000, 2000(LNCS, 1976), pp. 289302.
    4. 4)
      • 23. Diffie, W., Ledin, G.: ‘SMS4 encryption algorithm for wireless networks’, IACR Cryptol. ePrint Arch., 2008, 2008, p. 329.
    5. 5)
      • 12. Luo, Y., Lai, X., Wu, Z., et al: ‘A unified method for finding impossible differentials of block cipher structures’, Inf. Sci., 2014, 263, pp. 211220.
    6. 6)
      • 3. Bogdanov, A., Rijmen, V.: ‘Linear hulls with correlation zero and linear cryptanalysis of block ciphers’, Des. Codes Cryptogr., 2014, 70, (3), pp. 369383.
    7. 7)
      • 14. Burwick, C., Coppersmith, D., DAvignon, E., et al: ‘MARS-a candidate cipher for AES’. NIST AES Proposal, 1998, vol. 268.
    8. 8)
      • 7. Bogdanov, A., Geng, H., Wang, M., et al: ‘Zero-correlation linear cryptanalysis with FFT and improved attacks on ISO standards camellia and CLEFIA’. SAC 2013, Selected Areas in Cryptography, 2014(LNCS, 8282), pp. 306323.
    9. 9)
      • 18. Bouillaguet, C., Dunkelman, O., Fouque, P.A., et al: ‘New insights on impossible differential cryptanalysis’. SAC 2011, Selected Areas in Cryptography, 2012(LNCS, 7118), pp. 243259.
    10. 10)
      • 8. Bogdanov, A., Leander, G., Nyberg, K., et al: ‘Integral and multidimensional linear distinguishers with correlation zero’. ASIACRYPT 2012, 2012 (LNCS, 7658), pp. 244261.
    11. 11)
      • 5. Tsunoo, Y., Tsujihara, E., Shigeri, M., et al: ‘Impossible differential cryptanalysis of CLEFIA’. FSE 2008, Fast Software Encryption, 2008(LNCS, 5086), pp. 398411.
    12. 12)
      • 1. Knudsen, L.R.: ‘DEAL – A 128-bit BLOCK CIPHER’. Technical Report, Department of Informatics, University of Bergen, Norway, 1998.
    13. 13)
      • 6. Bogdanov, A., Wang, M.: ‘Zero correlation linear cryptanalysis with reduced data complexity’. FSE 2012, Fast Software Encryption, 2012(LNCS, 7549), pp. 2948.
    14. 14)
      • 20. Wei, Y., Li, P., Sun, B., et al: ‘Impossible differential cryptanalysis on Feistel ciphers with SP and SPS round functions’. Proc. ACNS 2010, 2010(LNCS, 6123), pp. 105122.
    15. 15)
      • 19. Xue, W., Lai, X.: ‘Impossible differential cryptanalysis of MARS-like structures’, IET Inf. Secur., 2015, 9, (4), pp. 219222.
    16. 16)
      • 10. Biham, E., Biryukov, A., Shamir, A.: ‘Miss in the middle attacks on IDEA and Khufu’. FSE 1999, Fast Software Encryption, 2009(LNCS, 1636), pp. 124138.
    17. 17)
      • 4. Phan, R.C.W.: ‘Impossible differential cryptanalyisis of 7-round advanced encryption standard (AES)’, Inf. Process. Lett., 2004, 91, (1), pp. 3338.
    18. 18)
      • 9. Sun, B., Liu, Z., Rijmen, V., et al: ‘Links among impossible differential, integral and zero correlation linear cryptanalysis’. CRYPTO 2015, 2005(LNCS, 9215), pp. 95115.
    19. 19)
      • 15. Gorski, M., Knapke, T., List, E., et al: ‘Mars Attacks! revisited: differential attack on 12 rounds of the MARS core and defeating the complex MARS key-schedule’. INDOCRYPT 2011, 2011(LNCS, 7107), pp. 94113.
    20. 20)
      • 13. Wu, S., Wang, M.: ‘Automatic search of truncated impossible differentials for word-oriented block ciphers’. Indocrypt 2012, 2012(LNCS, 7668), pp. 283302.
    21. 21)
      • 11. Kim, J., Hong, S., Lim, J., et al: ‘Impossible differential cryptanalysis for block cipher structures’. INDOCRYPT 2003, 2003(LNCS, 2904), pp. 8296.
    22. 22)
      • 21. Li, R., Sun, B., Li, C.: ‘Impossible differential cryptanalysis of SPN ciphers’, IET Inf. Secur., 2011, 5, (2), pp. 111120.
    23. 23)
      • 22. Carlet, C.: ‘Boolean functions for cryptography and error correcting codes’ (Cambridge University Press, 2006).
    24. 24)
      • 24. Aoki, K., Ichikawa, T., Kanda, M., et al: ‘Camellia: A 128-bit block cipher suitable for multiple platforms - design and analysis’. SAC 2000, Selected Areas in Cryptography, 2000(LNCS, 2012), pp. 3956.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2016.0448
Loading

Related content

content/journals/10.1049/iet-ifs.2016.0448
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address