http://iet.metastore.ingenta.com
1887

Highly nonlinear plateaued functions

Highly nonlinear plateaued functions

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors describe a method for producing Boolean functions of degree d ≥ 3 in n = 2dk − 1 (k = 1,  2,  …) variables, such that the functions are plateaued and balanced, have high nonlinearity and have no linear structures. The nonlinearity is 2 n−1 − 2(n−1)/2, which is the same as the largest possible nonlinearity for a quadratic function in n (odd) variables (the so-called ‘quadratic bound’). Their theorem uses some new ideas to generalise a theorem, which gave the case d = 3, in a 2009 paper by Fengrong Zhang et al. They discuss the cryptographic properties and applications for the functions.

References

    1. 1)
      • 1. Cusick, T.W., Stănică, P.: ‘Cryptographic Boolean functions and applications’ (Academic Press, San Diego, 2009).
    2. 2)
      • 2. Kavut, S., Yücel, M.D.: ‘Generalized rotation symmetric and dihedral symmetric Boolean functions – 9 variable Boolean functions with nonlinearity 242’. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2007), Springer, Berlin, 2007 (LNCS, 485), pp. 321329.
    3. 3)
      • 3. Maitra, S.: ‘Boolean functions on odd number of variables having nonlinearity greater than the bent concatenation bound’. in Preneel, B., Logachev, O.A.(EDs.): ‘Boolean Functions in Cryptology and Information Security (NATO ASI Zvenigorod, 2007), (IOS Press, Amsterdam, 2008), pp. 173182.
    4. 4)
      • 4. Kavut, S., Maitra, S., Yücel, M.D.: ‘Search for Boolean functions with excellent profiles in the rotation symmetric class’, IEEE Trans. Inf. Theory, 2007, 53, pp. 17431751.
    5. 5)
      • 5. Patterson, N.J., Wiedemann, D.H.: ‘The covering radius of the [215 16] Reed–Muller code is at least 16276’, IEEE Trans. Inf. Theory, 1983, IT-29, pp. 354356.
    6. 6)
      • 6. Maitra, S., Sarkar, P.: ‘Cryptographically significant Boolean functions with five valued Walsh spectra’, Theor. Comput. Sci., 2002, 276, pp. 133146.
    7. 7)
      • 7. Zheng, Y., Zhang, X.-M.: ‘Plateaued functions’. Advances in Cryptology – ICICS'99, Springer, Berlin, 1999 (LNCS, 1726), pp. 284300.
    8. 8)
      • 8. Zheng, Y., Zhang, X.-M.: ‘On plateaued functions’, IEEE Trans. Inf.. Theory, 2001, 47, pp. 12151223.
    9. 9)
      • 9. Canteaut, A., Carlet, C., Charpin, P., et al: ‘On cryptographic properties of the cosets of R(1, m)’, IEEE Trans. Inf.. Theory, 2001, 47, pp. 14941513.
    10. 10)
      • 10. Zhang, F., Xie, M., Ma, H., et al: ‘Highly nonlinear cubic homogeneous plateaued functions’, J. Beijing Univ. Posts Telecommun. (in Chinese), 2009, 32, pp. 8184.
    11. 11)
      • 11. Carlet, C., Prouff, E.: ‘On plateaued functions and their constructions’. Fast Software Encryption (FSE 2003), Springer, Berlin, 2003 (LNCS, 2887), pp. 5473.
    12. 12)
      • 12. Dickson, L.E.: ‘Linear groups with an exposition of the Galois field theory’ (Dover, New York, 1958).
    13. 13)
      • 13. MacWilliams, F., Sloane, N.: ‘The theory of error-correcting codes’ (North-Holland, Amsterdam, 1977).
    14. 14)
      • 14. Kim, H., Park, S.-M., Hahn, S.G.: ‘On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2’, Discrete Appl. Math., 2009, 157, pp. 428432.
    15. 15)
      • 15. Rothaus, O.: ‘On ‘bent’ functions’, J. Comb. Theory A, 1976, 20, pp. 300305.
    16. 16)
      • 16. Canteaut, A., Videau, M.: ‘Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis’. Advances in Cryptology – Eurocrypt 2002, Springer, Berlin, 2002 (LNCS, 2332), pp. 518553.
    17. 17)
      • 17. Evci, M., Kavut, S.: ‘DPA resilience of rotation symmetric S-boxes’. IWSEC 2014, Springer, Berlin, 2014 (LNCS, 8639), pp. 146157.
    18. 18)
      • 18. Gao, G., Zhang, X., Liu, W., et al: ‘Constructions of quadratic and cubic rotation symmetric bent functions’, IEEE Trans. Inf. Theory, 2012, 58, pp. 49084913.
    19. 19)
      • 19. Kavut, S.: ‘Results on rotation-symmetric S-boxes’, Inf. Sci., 2012, 201, pp. 93113.
    20. 20)
      • 20. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: ‘Design and implementation of rotation symmetric S-boxes with high nonlinearity and high DPA resistance’. Proc. IEEE Symp. HOST, 2013, pp. 8792.
    21. 21)
      • 21. Rijmen, V., Barreto, P., Gazzoni Filho, D.: ‘Rotation symmetry in algebraically generated cryptographic substitution tables’, Inf. Proc. Lett., 2008, 106, pp. 246250.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2016.0131
Loading

Related content

content/journals/10.1049/iet-ifs.2016.0131
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Comment
A comment has been published for this article:
Research on highly non-linear plateaued functions
This is a required field
Please enter a valid email address