Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Highly nonlinear plateaued functions

Loading full text...

Full text loading...

/deliver/fulltext/iet-ifs/11/2/IET-IFS.2016.0131.html;jsessionid=w40q1j6md9ff.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-ifs.2016.0131&mimeType=html&fmt=ahah

References

    1. 1)
      • 8. Zheng, Y., Zhang, X.-M.: ‘On plateaued functions’, IEEE Trans. Inf.. Theory, 2001, 47, pp. 12151223.
    2. 2)
      • 12. Dickson, L.E.: ‘Linear groups with an exposition of the Galois field theory’ (Dover, New York, 1958).
    3. 3)
      • 10. Zhang, F., Xie, M., Ma, H., et al: ‘Highly nonlinear cubic homogeneous plateaued functions’, J. Beijing Univ. Posts Telecommun. (in Chinese), 2009, 32, pp. 8184.
    4. 4)
      • 9. Canteaut, A., Carlet, C., Charpin, P., et al: ‘On cryptographic properties of the cosets of R(1, m)’, IEEE Trans. Inf.. Theory, 2001, 47, pp. 14941513.
    5. 5)
      • 2. Kavut, S., Yücel, M.D.: ‘Generalized rotation symmetric and dihedral symmetric Boolean functions – 9 variable Boolean functions with nonlinearity 242’. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2007), Springer, Berlin, 2007 (LNCS, 485), pp. 321329.
    6. 6)
      • 16. Canteaut, A., Videau, M.: ‘Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis’. Advances in Cryptology – Eurocrypt 2002, Springer, Berlin, 2002 (LNCS, 2332), pp. 518553.
    7. 7)
      • 5. Patterson, N.J., Wiedemann, D.H.: ‘The covering radius of the [215 16] Reed–Muller code is at least 16276’, IEEE Trans. Inf. Theory, 1983, IT-29, pp. 354356.
    8. 8)
      • 13. MacWilliams, F., Sloane, N.: ‘The theory of error-correcting codes’ (North-Holland, Amsterdam, 1977).
    9. 9)
      • 20. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: ‘Design and implementation of rotation symmetric S-boxes with high nonlinearity and high DPA resistance’. Proc. IEEE Symp. HOST, 2013, pp. 8792.
    10. 10)
      • 21. Rijmen, V., Barreto, P., Gazzoni Filho, D.: ‘Rotation symmetry in algebraically generated cryptographic substitution tables’, Inf. Proc. Lett., 2008, 106, pp. 246250.
    11. 11)
      • 4. Kavut, S., Maitra, S., Yücel, M.D.: ‘Search for Boolean functions with excellent profiles in the rotation symmetric class’, IEEE Trans. Inf. Theory, 2007, 53, pp. 17431751.
    12. 12)
      • 6. Maitra, S., Sarkar, P.: ‘Cryptographically significant Boolean functions with five valued Walsh spectra’, Theor. Comput. Sci., 2002, 276, pp. 133146.
    13. 13)
      • 15. Rothaus, O.: ‘On ‘bent’ functions’, J. Comb. Theory A, 1976, 20, pp. 300305.
    14. 14)
      • 19. Kavut, S.: ‘Results on rotation-symmetric S-boxes’, Inf. Sci., 2012, 201, pp. 93113.
    15. 15)
      • 18. Gao, G., Zhang, X., Liu, W., et al: ‘Constructions of quadratic and cubic rotation symmetric bent functions’, IEEE Trans. Inf. Theory, 2012, 58, pp. 49084913.
    16. 16)
      • 11. Carlet, C., Prouff, E.: ‘On plateaued functions and their constructions’. Fast Software Encryption (FSE 2003), Springer, Berlin, 2003 (LNCS, 2887), pp. 5473.
    17. 17)
      • 7. Zheng, Y., Zhang, X.-M.: ‘Plateaued functions’. Advances in Cryptology – ICICS'99, Springer, Berlin, 1999 (LNCS, 1726), pp. 284300.
    18. 18)
      • 14. Kim, H., Park, S.-M., Hahn, S.G.: ‘On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2’, Discrete Appl. Math., 2009, 157, pp. 428432.
    19. 19)
      • 3. Maitra, S.: ‘Boolean functions on odd number of variables having nonlinearity greater than the bent concatenation bound’. in Preneel, B., Logachev, O.A.(EDs.): ‘Boolean Functions in Cryptology and Information Security (NATO ASI Zvenigorod, 2007), (IOS Press, Amsterdam, 2008), pp. 173182.
    20. 20)
      • 1. Cusick, T.W., Stănică, P.: ‘Cryptographic Boolean functions and applications’ (Academic Press, San Diego, 2009).
    21. 21)
      • 17. Evci, M., Kavut, S.: ‘DPA resilience of rotation symmetric S-boxes’. IWSEC 2014, Springer, Berlin, 2014 (LNCS, 8639), pp. 146157.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2016.0131
Loading

Related content

content/journals/10.1049/iet-ifs.2016.0131
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Comment
A comment has been published for this article:
Research on highly non-linear plateaued functions
This is a required field
Please enter a valid email address