access icon free Hyperchaotic system-based pseudorandom number generator

Pseudorandom sequences are very important in the field of cryptography. The characteristics such as non-linearity and random-like behaviours make chaotic systems suited to generate pseudorandom sequences. However, most of chaos-based pseudorandom number generators have a typical shortcoming. That is, the finite precision in all processors may cause the chaotic systems to degenerate into a periodic function or a fixed point. To overcome this shortcoming, a hyperchaos-based generator is proposed. First, a new hyperchaotic system with bigger Lyapunov exponent is constructed. Then the self-shrinking generator, which is superior to many other linear feedback shift register-based generators, is used to perturb the hyperchaotic sequences to decrease the period degeneration and improve the performance of the sequences. The proposed generator is named as hyperchaos with self-shrinking perturbance generator (H-SSP generator). The analysis results show that the H-SSP generator has better performance.

Inspec keywords: random number generation; chaos; cryptography; Lyapunov methods; random sequences

Other keywords: Lyapunov exponent; hyperchaotic sequences; self-shrinking generator; hyperchaotic system; H-SSP generator; cryptography; periodic function; hyperchaos with self-shrinking perturbance generator; pseudorandom number generator

Subjects: Data security; Digital arithmetic methods

References

    1. 1)
      • 14. Yang, T.: ‘A survey of chaotic secure communication systems’, Int. J. Comput. Cogn., 2004, 2, (2), pp. 81130.
    2. 2)
      • 45. ‘754-1985 IEEE standard for binary floating-point arithmetic’. Available at http://www.standards.ieee.org/, accessed January 2015.
    3. 3)
      • 33. Cai, G.L., Tan, Z.M., Zhou, W.H., et al: ‘Dynamical analysis of a new chaotic system and its chaotic control’, Acta Phys. Sin., 2007, 56, (11), pp. 62306237.
    4. 4)
      • 12. Kocarev, L.: ‘Chaos-based cryptography: a brief overview’, IEEE Circuits Syst. Mag., 2001, 1, (3), pp. 621.
    5. 5)
      • 1. Kapitaniak, T., Chua, L.O., Zhong, G.Q.: ‘Experimental hyperchaos in coupled Chua's circuits’, IEEE Trans. Circuits I, 1994, 41, (7), pp. 499503.
    6. 6)
      • 35. Kaplan, J.L., Yorke, J.A.: ‘Functional differential equations and approximation of fixed points’ (Springer-Verlag, 1979, 1st edn.).
    7. 7)
      • 30. Matsumoto, T., Chua, L.O., Kobayashi, K.: ‘Hyperchaos: laboratory experiment and numerical confirmation’, IEEE Trans. Circuits I, 1986, 33, (11), pp. 11431147.
    8. 8)
      • 18. Wang, K., Pei, W.J., Xia, H.S., et al: ‘Pseudo-random number generator based on asymptotic deterministic randomness’, Phys. Lett. A, 2008, 372, pp. 43884394.
    9. 9)
      • 37. Li, S.J., Mou, X.Q., Cai, Y.L.: ‘Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher cryptography’. INDOCRYPT, Berlin, 2001 (LNCS, 2247), p. 316.
    10. 10)
      • 41. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (John Wiley & Sons Inc., Hoboken, 2006, 2nd edn.).
    11. 11)
      • 7. Pareek, N.K., Patidar, V., Sud, K.K.: ‘Discrete chaotic cryptography using external key’, Phys. Lett. A, 2003, 309, (1–2), pp. 7582.
    12. 12)
      • 36. Sang, T., Wang, R.L., Yan, Y.X.: ‘Perturbance-based algorithm to expand cycle length of chaotic key stream’, Electron. Lett., 1998, 34, (9), pp. 873874.
    13. 13)
      • 29. Rössler, O.E.: ‘An equation for hyperchaos’, Phys. Lett. A, 1979, 71, (2–3), pp. 155157.
    14. 14)
      • 23. Özkaynaka, F., Yavuz, S.: ‘Security problems for a pseudorandom sequence generator based on the Chen chaotic system’, Comput. Phys. Commun., 2013, 184, (9), pp. 21782181.
    15. 15)
      • 6. Swathy, P.S., Thamilmaran, K.: ‘Hyperchaos in SC-CNN based modified canonical Chua's circuit’, Nonlinear Dyn., 2014, 78, (4), pp. 26392650.
    16. 16)
      • 16. Dachselt, F., Kelber, K., Vandewalle, J., et al: ‘Chaotic versus classical stream ciphers – a comparative study’. Proc. Int. Symp. Circuits and Systems, Monterey, CA, June 1998, vol. 4, pp. 518521.
    17. 17)
      • 13. Dachselt, F., Schwarz, W.: ‘Chaos and cryptography’, IEEE Trans. Circuits I, 2001, 48, (12), pp. 14981509.
    18. 18)
      • 5. Hu, G.S.: ‘Hyperchaos of higher order and its circuit implementation’, Int. J. Circuits Theory Appl., 2011, 39, (1), pp. 7989.
    19. 19)
      • 15. Sankpal, P.R., Vijaya, P.A.: ‘Image encryption using chaotic maps: a survey’. Fifth Int. Conf. Signal and Image Processing, Jeju Island, South Korea, July 2014, pp. 102107.
    20. 20)
      • 42. James, F.: ‘Chaos and randomness’, Chaos Soliton Fractals, 1995, 6, pp. 221226.
    21. 21)
      • 26. Qi, G.Y., Van Wyk, M.A., Van Wyk, B.J., et al: ‘On a new hyperchaotic system’, Phys. Lett. A, 2008, 372, pp. 124136.
    22. 22)
      • 3. Ogorzalek, M.J.: ‘Taming chaos – part I: synchronization’, IEEE Trans. Circuits I, 1993, 40, (10), pp. 693699.
    23. 23)
      • 17. Millerioux, G., Maria Amigo, J., Daafouz, J.: ‘A connection between chaotic and conventional cryptography’, IEEE Trans. Circuits I, 2008, 55, (6), pp. 16951703.
    24. 24)
      • 47. Jeng, F.G., Huang, W.L., Chen, T.H.: ‘Cryptanalysis and improvement of two hyper-chaos- based image encryption schemes’, Signal Process., Image, 2015, 34, pp. 4551.
    25. 25)
      • 44. Persohn, K.J., Povinelli, R.J.: ‘Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation’, Chaos Soliton Fractals, 2012, 45, (3), pp. 238245.
    26. 26)
      • 43. Sheng, L.Y., Xiao, Y.Y., Sheng, Z.: ‘A universal algorithm for transforming chaotic sequences into uniform pseudo-random sequences’, Acta Phys. Sin., 2008, 57, (7), pp. 40074013.
    27. 27)
      • 11. Li, J.H., Liu, H.: ‘Colour image encryption based on advanced encryption standard algorithm with two-dimensional chaotic map’, IET Inf. Sec., 2013, 7, (4), pp. 265270.
    28. 28)
      • 21. Wang, X.Y., Qin, X.: ‘A new pseudo-random number generator based on CML and chaotic iteration’, Nonlinear Dyn., 2012, 70, (2), pp. 15891592.
    29. 29)
      • 2. Pecora, L.M., Carroll, T.L.: ‘Synchronization in chaotic systems’, 1990, 64, (8), pp. 821824.
    30. 30)
      • 34. Lu, K.: ‘Chaos dynamics’ (Shanghai Translation Publishing House, Shanghai, 1990, 1st edn.).
    31. 31)
      • 10. Barakat, L.M., Mansingka, A.S., Radwan, A.G.: ‘Hardware stream cipher with controllable chaos generator for colour image encryption’, IET Image Process., 2014, 8, (1), pp. 3343.
    32. 32)
      • 48. Özkaynak, F., Özer, A.B., Yavuz, S.: ‘Cryptanalysis of a novel image encryption scheme based on improved hyperchaotic sequences’, Opt. Commun., 2012, 285, (24), pp. 49464948.
    33. 33)
      • 32. Liu, M.H., Feng, J.C., Tse, C.K.: ‘A new hyperchaotic system and its circuit implementation’, Int. J. Bifurcation Chaos, 2010, 20, (4), pp. 12011208.
    34. 34)
      • 28. Meier, W., Staffelbach, O.: ‘The self-shrinking generator’. Advances in Cryptology – EUROCRYPT ’94. Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy, May 1994, pp. 205214.
    35. 35)
      • 22. Hu, H.P., Liu, L.F., Ding, N.D.: ‘Pseudorandom sequence generator based on the Chen chaotic system’, Comput. Phys. Commun., 2013, 184, (3), pp. 765768.
    36. 36)
      • 31. Li, Y.X., Tang, W.K.S., Chen, G.R.: ‘Generating hyperchaos via state feedback control’, Int. J. Bifurcation Chaos, 2005, 15, (10), pp. 33673375.
    37. 37)
      • 49. Zhang, Y.S., Wen, W.Y., Su, M.T., et al: ‘Cryptanalyzing a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system’, Opt. – Int. J. Light Electron Opt., 2014, 125, (4), pp. 15621564.
    38. 38)
      • 25. Qi, G.Y., Sandra, B.M.: ‘Hyper-chaos encryption using convolutional masking and model free unmasking’, Chin. Phys. B., 2014, 23, (5), p. 050507.
    39. 39)
      • 50. Xie, T., Liu, Y.S., Tang, J.: ‘Breaking a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system’, Opt. – Int. J. Light Electron Opt., 2014, 125, (24), pp. 71667169.
    40. 40)
      • 24. Wang, J.Z., Chen, Z.Q., Yuan, Z.Z.: ‘The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system’, Chin. Phys., 2006, 15, (6), pp. 12161225.
    41. 41)
      • 19. Li, H.J., Zhang, J.S.: ‘A novel chaotic stream cipher and its application to palmprint template protection’, Chin. Phys. B, 2010, 19, (4), p. 040505.
    42. 42)
      • 8. Chen, G.R., Mao, Y.B., Chui, C.K.: ‘A symmetric image encryption scheme based on 3D chaotic cat maps’, Chaos Soliton Fractals, 2004, 21, (3), pp. 749761.
    43. 43)
      • 38. Available at http://www.csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf, accessed January 2015.
    44. 44)
      • 20. Wang, F.L.: ‘A new pseudo-random number generator and application to digital secure communication scheme based on compound symbolic chaos’, Acta Phys. Sin., 2011, 60, (11), p. 110517.
    45. 45)
      • 4. Wu, G.C., Baleanu, D.: ‘Chaos synchronization of the discrete fractional logistic map’, Signal Process., 2014, 102, pp. 9699.
    46. 46)
      • 40. Tong, X.J., Cui, M.G.: ‘Feedback image encryption algorithm with compound chaotic stream cipher based on perturbation’, Sci. China Inf. Sci., 2010, 53, (1), pp. 191202.
    47. 47)
      • 46. Rhouma, R., Belghith, S.: ‘Cryptanalysis of a new image encryption algorithm based on hyper-chaos’, Phys. Lett. A., 2008, 372, (38), pp. 59735978.
    48. 48)
      • 27. Zhu, C.X.: ‘A novel image encryption scheme based on improved hyperchaotic sequences’, Opt. Commun., 2012, 285, (1), pp. 2937.
    49. 49)
      • 9. Kanso, A.: ‘Self-shrinking chaotic stream ciphers’, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, (2), pp. 822836.
    50. 50)
      • 39. Wu, X.J., Bai, C.X., Kan, H.B.: ‘A new color image cryptosystem via hyperchaos synchronization’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (6), pp. 18841897.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2015.0024
Loading

Related content

content/journals/10.1049/iet-ifs.2015.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading