Cryptanalysis and improvement of a certificateless partially blind signature

Cryptanalysis and improvement of a certificateless partially blind signature

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Partially blind signature is an important technique in secure electronic cash (e-cash) system. The first concrete certificateless partially blind signature (CLPBS) scheme for e-cash was constructed in 2011. Recently it was found that this construction had a security weakness and a rescued scheme was given. Unfortunately, the formal security proof was not given. In this study, the authors first give cryptanalysis of their rescued scheme. They demonstrate that a malicious user in their rescued scheme can forge a signature on any message by replacing the signer's public key. In an e-cash system, blind signatures issued by the bank are viewed as e-cash. Once they apply their scheme to an untraceable e-cash system, a malicious user can forge valid electronic coins (i.e. valid signatures) without being detected by the bank. It will result in loss of the bank. Then, they propose a newly improved CLPBS scheme which achieves the strongest security level and has higher computational efficiency than the rescued scheme published earlier. Finally, they give an example of potential application to e-cash systems using their scheme.


    1. 1)
      • 1. Chaum, D.: ‘Blind signatures for untraceable payments’. Proc. of Crypto 1982, Santa Barbara, CA, 1982, pp. 199203.
    2. 2)
      • 2. Chaum, D., Fiat, A., Naor, M.: ‘Untraceable electronic cash’. Proc. of Advances in Cryptology-CRYPTO'88, Springer-Verlag, 1988, (LNCS, 403), pp. 319327.
    3. 3)
      • 3. Abe, M., Fujisaki, E.: ‘How to date blind signatures’. Proc. of Advances in Cryptology-ASIACRYPT 1996, Springer-Verlag, 1996, (LNCS, 1163), pp. 244251.
    4. 4)
      • 4. Abe, M., Okamoto, T.: ‘Provably secure partially blind signatures’. Proc. of Advances in Cryptology-Crypto 2000, Springer-Verlag,(LNCS, 1880), 2000, pp. 271286.
    5. 5)
    6. 6)
      • 6. Zhang, F., Safavi-Naini, R., Susilo, W.: ‘Efficient verifiably encrypted signature and partially blind signature from bilinear pairings’. Proc. of Indocrypt 2003, Springer-Verlag, 2003, (LNCS, 2904), pp. 191204.
    7. 7)
    8. 8)
      • 8. Hu, X., Huang, S.: ‘An efficient id-based partially blind signature scheme’. Proc. of the Eighth ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing-SNPD, 2007, Qingdao, China, pp. 291296.
    9. 9)
      • 9. Chow, S., Hui, L., Yiu, S., et al: ‘Two improved partially blind signature schemes from bilinear pairings’. Proc. of Information Security and Privacy-ACISP 2005, Springer-Verlag, 2005, (LNCS, 3574), pp. 316328.
    10. 10)
      • 10. Al-Riyami, S., Paterson, K.: ‘Certificateless public key cryptography’. Proc. of Advances in Cryptology-ASIACRYPT 2003, Springer, 2003, (LNCS, 2894), pp. 452473.
    11. 11)
      • 11. Huang, X., Mu, Y., Susilo, W., et al: ‘Certificateless signature revisited’. Proc. of ASISP 2007, Springer, Berlin, 2007, (LNCS, 4586), pp. 308322.
    12. 12)
    13. 13)
      • 13. Zhang, Z., Wong, D., Xu, J., et al: ‘Certificateless public-key signature: security model and efficient construction’. Proc. of Applied Cryptography and Network Security, Springer, Berlin, 2006, (LN CS, 3989), pp. 293308.
    14. 14)
      • 14. Choi, K., Park, J., Hwang, J., et al: ‘Efficient certificateless signature schemes’. Proc. of Applied Cryptography and Network Security, Springer, Berlin, 2007, (LNCS, 4521), pp. 443458.
    15. 15)
      • 15. Zhang, L., Zhang, F.: ‘A new certificateless aggregate signature scheme’. Proc. of Communications Society, 2008, pp. 16851689.
    16. 16)
      • 16. Liu, J., Au, M., Susilo, W.: ‘Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the standard model’. Proc. of the Second ACM Symp. on Information, Computer and Communications Security, ACM, 2007, pp. 273283.
    17. 17)
      • 17. Xiong, H., Qin, Z., Li, F.: ‘An improved certificateless signature scheme secure in the standard model’, Fundam. Inform., 2008, 88, pp. 193206.
    18. 18)
      • 18. Yuan, Y., Li, D., Tian, L., et al: ‘Certificateless signature scheme without random oracles’. Proc. of Advances in Information Security and Assurance 2009, Springer, 2009, (LNCS, 5576), pp. 3140.
    19. 19)
    20. 20)
      • 20. Castro, R., Dahab, R.: ‘Efficient certificateless signatures suitable for aggregation’. Cryptology ePrint Archive. Available online at
    21. 21)
      • 21. Gong, Z., Long, Y., Hong, X., Chen, K.: ‘Two certificateless aggregate signatures from bilinear maps’. IEEE SNPD, 2007, vol. 3, pp. 188193.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 27. He, D., Chen, Y., Chen, J.: ‘An efficient certificateless proxy signature scheme without pairing’, Math. Comput. Model., 2011, 34, pp. 344352.
    28. 28)
    29. 29)
    30. 30)
      • 30. Au, M., Mu, Y., Chen, J., et al: ‘Malicious KGC attacks in certificateless cryptography’. Proc. of the Second ACM Symp. on Information, Computer and Communications Security, ACM, 2007, pp. 302311.
    31. 31)

Related content

This is a required field
Please enter a valid email address