http://iet.metastore.ingenta.com
1887

Pseudorandom bit generator based on non-stationary logistic maps

Pseudorandom bit generator based on non-stationary logistic maps

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Pseudorandom binary sequences play a significant role in many fields, such as error control coding, spread spectrum communications, and cryptography. In recent years, chaotic system is regarded as an important pseudorandom source in the design of pseudorandom bit generators (PRBGs). Among them, most are based on one or more fixed chaotic systems, and the generated binary sequences come to be stationary. However, these kinds of chaotic PRBGs can be attacked by reconstructing the phase space or using some statistical analysis methods. In this study, a scheme for chaotic PRBG based on non-stationary logistic map is proposed. The authors design a dynamic algorithm to change the driven parameter sequence (not random) into a random-like sequence. The variable parameters disrupt the phase space of the system, which can resist the phase space reconstruction attacks effectively. They prove that the non-stationary logistic map is still chaotic under Wiggins’ chaos definition. The numerical analysis shows that the generated binary sequences have good cryptographic properties and can pass the well-known statistical tests. The authors’ chaotic PRBG based on non-stationary logistic map is a novel scheme in the design of PRBG, and is more secure than the PRBGs based on fixed chaotic systems.

References

    1. 1)
      • 1. Golomb, S.W.: ‘Shift Register Sequences’ (Holden-Day, San Francisco, CA, 1967).
    2. 2)
      • 2. Kalouptsidis, N.: ‘Signal processing systems’ (Telecommunications and Signal Processing Series, Wiley, New York, 1996).
    3. 3)
    4. 4)
      • 4. Oishi, S., Inoue, H.: ‘Pseudo-random number generators and chaos’, Trans. Inst. Electron. Commun. Eng. Jpn. E, 1982, 65, (1), pp. 534541.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 19. Szczepanski, J., Kotulski, Z., Gorski, K., Paszkiewicz, A., Zugaj, A.: ‘On some models of pseudorandom number generators based on chaotic dynamical systems’. Proc. RCMCIS'99, 1999, vol. 3, pp. 213220.
    20. 20)
    21. 21)
    22. 22)
      • 22. Li, S.J., Mou, X.Q., Cai, Y.L.: ‘Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher cryptography’. Second Int. Conf. on Cryptology Progress in Cryptology – INDOCRYPT 2001, India, (LNCS 2247), 2001, pp. 316329.
    23. 23)
      • 23. Huaping, L., Wang, S., Gang, H.: ‘Pseudo-random number generator based on coupled map lattices’, Int. J. Mod. Phys. B, 2004, 18, (17–19), pp. 24092414.
    24. 24)
      • 24. Fu, S., Chen, M., Zhou, Y.: ‘A chaos-based random number generators’, Comput. Res. Develop., 2004, 41, (3), pp. 749754.
    25. 25)
      • 25. Li, P., Li, Z., Halang, W.A., Chen, G.R.: ‘A novel multiple pseudorandom bits generator based on spatiotemporal chaos’, World Congress, 2005, 16, (2), p. 836.
    26. 26)
    27. 27)
      • 27. Mao, Y.B., Liu, C., Liu, W.B.: ‘Design and FPGA implementation of a pseudo-random bit sequence generator using spatiotemporal chaos’. IEEE 2006 Int. Conf. on Communications, Circuits and Systems Proc., Guilin, China, June 2006, pp. 21142118.
    28. 28)
      • 28. Xie, B.Y., Wang, D.S., Jiang, X.Z.: ‘On pseudo-random bit generator based on couple chaotic systems’, J. Naval Univ. Eng., 2007, 19, (5), pp. 5155.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 33. Patidar, V., Sud, K.K.: ‘A pseudo random bit generator based on chaotic logistic map and its statistical testing’, Informatica, 2009, 33, (4), pp. 441452.
    34. 34)
      • 34. Guyeux, C., Wang, Q.X., Bahi, J.M.: ‘A pseudo random numbers generator based on chaotic iterations: application to watermarking’. Int. Conf. on Web Information Systems and Mining, Sanya, Peoples R China, October 2014, pp. 202211.
    35. 35)
    36. 36)
      • 36. Cristina, D.A., Radu, B., Ciprian, R.: ‘A new pseudorandom bit generator using compounded chaotic tent maps’. Ninth Int. Conf. on Communications, Bucharest, Romania, June 2012, pp. 339342.
    37. 37)
      • 37. Wang, X.Y., Yang, L.: ‘Design of pseudo-random bit generator based on chaotic maps’, Int. J. Mod. Phys. B, 2012, 26, (32) p. 1250208-1.
    38. 38)
    39. 39)
    40. 40)
      • 40. Francois, M., Grosges, T., Barchiesi, D., Erra, R.: ‘A new pseudo-random number generator based on two chaotic maps’, Informatica, 2013, 24, (2), pp. 181197.
    41. 41)
      • 41. Lasota, A., Mackey, M.C.: ‘Chaos, fractals, and noise’ (Springer-Verlag, New York, 1994).
    42. 42)
      • 42. Ulam, S.L., von Neumann, J.: ‘On combination of stochastic and deterministic processes’, Bull. Math. Soc., 1947, 53, p. 1120.
    43. 43)
    44. 44)
    45. 45)
      • 45. Rukin, A., Soto, J., Nechvatal, J., et al: ‘A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications’. NIST Special Publication 800-22rev1a,, April 2010.
    46. 46)
    47. 47)
      • 47. Chen, Z.D., Zhang, Z.G.: ‘A fast algorithm of multidimensional discrete Fourier transform’, Prog. Nat. Sci., 1999, 9, (1), pp. 780782.
    48. 48)
      • 48. Beker, H., Piper, F.C.: ‘Cipher systems: the protection of communications’ (Wiley, New York, 1982).
    49. 49)
      • 49. NIST. Federal Information Processing Standards Publication (FIPS140-1). Security requirements for cryptographic modules, 1994.
    50. 50)
    51. 51)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2014.0192
Loading

Related content

content/journals/10.1049/iet-ifs.2014.0192
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address