Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free High accuracy android malware detection using ensemble learning

Loading full text...

Full text loading...

/deliver/fulltext/iet-ifs/9/6/IET-IFS.2014.0099.html;jsessionid=28am9u094vrsy.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-ifs.2014.0099&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
      • 36. http://www.stat.berkeley.edu/users/breiman/RandomForests/, AccessedOctober 2014.
    3. 3)
      • 24. Peng, H., Gates, C., Sarma, B., et al: ‘Using probabilistic generative models for ranking risks of Android apps’. Proc. of the 19th ACM Conf. on Computer and Communications Security (CCS 2012), Raleigh, NC, USA, October 2012, pp. 241252.
    4. 4)
    5. 5)
      • 11. Mann, C., Starostin, A.: ‘A framework for static detection of privacy leaks in android applications’. Proc. 27th Annual ACM Symp. on Applied Computing (SAC'12), Trento, Italy, March 2012, pp. 14571462.
    6. 6)
      • 17. Chen, Y., Narayanan, A., Pang, S., Tao, B.: ‘Malicious software detection using multiple sequence alignment and data mining’. 26th IEEE Int. Conf. on Advanced Information Networking and Applications AINA 2012, 2012.
    7. 7)
    8. 8)
      • 14. Chan, P.P.F., Hui, L.C.K., Yiu, S.M.: ‘DroidChecker: analyzing android applications for capability leak’. Proc. Fifth ACM Conf. on Security and Privacy in Wirelessand Mobile Networks (WISEC'12), Tucson, AZ, USA, April 2012, pp. 125136.
    9. 9)
      • 23. Sarma, B., Gates, C., Li, N., Potharaju, R., Nita-Rotaru, C., Molloy, I.: ‘Android permissions: a perspective combining risks and benefits’. Proc. 17th ACM Symp. on Access Control Models and Technologies, (SACMAT'12), June 2012, pp. 1322.
    10. 10)
      • 9. Gibler, C., Crussell, J., Erickson, J., Chen, H.: ‘AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale’. Proc. Fifth Int. Conf. on Trust and Trustworthy Computing (TRUST 2012), Vienna, Austria, June 2012, pp. 291307.
    11. 11)
      • 15. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: ‘Data mining methods for detection of new malicious executables’. Proc. 2001 IEEE Symp. on Security and Privacy, (SP‘01), Oakland, CA, USA, May 2001, pp. 3849.
    12. 12)
      • 19. Muttik, I.: ‘Malware mining’. Proc. 21st Virus Bulletin Int. Conf., VB2011, Barcelona, Spain, 5–7 October 2011.
    13. 13)
      • 29. Zhao, M., Ge, F., Zhang, T., Yuan, Z.: ‘Antimaldroid: ‘An efficient svm based malware detection framework for android’, in Zhao, M., Ge, F., Zhang, T., Yuan, Z. (Eds.): ‘Communications in computer and information science’ (Springer, 2011), vol. 243, pp. 158166.
    14. 14)
      • 33. Hastie, T., Tibshirani, R., Freidman, J.: ‘The elements of statistical learning’ (Springer, 2001).
    15. 15)
      • 21. Sahs, J., Khan, L.: ‘A machine learning approach to android malware detection’. Proc. of European Intelligence and Security Informatics Conf., Odense, Denmark, August 2012, pp. 141147.
    16. 16)
      • 26. Schmidt, A.-D., Bye, R., Schmidt, H.-G., et al: ‘Static analysis of executables for collaborative malware detection on Android’. IEEE Int. Conf. on Communications (ICC'09), Dresden, Germany, June 2009, pp. 15.
    17. 17)
    18. 18)
      • 30. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: ‘Crowdroid: behavior-based malware detection system for Android’. Proc. First ACM Workshop on Security and Privacy in Smartphones and Mobile devices (SPSM'11), New York, USA, 2011, pp. 1526.
    19. 19)
    20. 20)
      • 13. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: ‘Analyzing inter-application communication in android’. Proc. Ninth Int. Conf. on Mobile Systems, Applications, and Services (MobiSys'11). ACM, Washington, DC, USA, June 2011, pp. 239252.
    21. 21)
      • 31. Enck, W., Gilbert, P., Chun, B., et al: ‘Taintdroid: an information-flow tracking system for real time privacy monitoring on smartphones’. Proc. Ninth USENIX Conf. on Operating Systems Design and Implementation, USENIX2010, pp. 16.
    22. 22)
      • 27. Shabtai, A., Elovici, Y.: ‘Applying behavioral detection on android based devices’. MOBILWARE, 2010, pp. 235249.
    23. 23)
      • 22. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedro, X., Bringas, P.G., Alvarez, G.: ‘PUMA: permission usage to detect malware in android’. Int. Joint Conf. CISIS'12-ICEUTÉ12-SOCO'12 Special Sessions, in Advances in Intelligent Systems and Computing, vol. 189, pp. 289298.
    24. 24)
      • 5. Oberheide, J., Miller, C.: ‘Dissecting the Android Bouncer’. SummerCon 2012, Brooklyn, NY, USA, June 2012.
    25. 25)
    26. 26)
      • 16. Wang, T.-Y., Wu, C.-H., Hsieh, C.-C.: ‘A virus prevention model based on static analysis and data mining methods’. Proc. IEEE Eighth Int. Conf. on Computer and Information Technology Workshops, Sydney, July 2008, pp. 288293.
    27. 27)
      • 6. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: ‘RiskRanker: scalable and accurate zero-day android malware detection’. Proc. Tenth Int. Conf. on Mobile Systems, Applications, and Services (MobiSys'12) ACM, Lake District, UK, June 2012, pp. 281294.
    28. 28)
    29. 29)
      • 8. Batyuk, L., Herpich, M., Camtepe, S.A., Raddatz, K., Schmidt, A., Albayrak, S.: ‘Using static analysis for automatic assessment and mitigation of unwanted and malicious activities within android applications’. Sixth Int. Conf. on Malicious and Unwanted Software (MALWARE 2011), Fajardo, PR, USA, October 2011, pp. 6672.
    30. 30)
      • 37. Witten, H.I., Frank, E., Hall, M.A.: ‘Data Mining: practical machine learning tools and techniques’ (Morgan Kaufmann, 2011, 3rd edn.).
    31. 31)
    32. 32)
      • 25. Dong-Jie, W., Ching-Hao, M., Te-En, W., Hahn-Ming, L., Kuo-Ping, W.: ‘DroidMat: Android malware detection through manifest and API calls tracing’. Proc. Seventh Asia Joint Conf. on Information Security (Asia JCIS), 2012, pp. 6269.
    33. 33)
      • 7. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: ‘ProfileDroid: multi-layer profiling of android applications’. Proc. 18th Int. Conf. on Mobile Computing and Networking (Mobicom'12). Istanbul, Turkey, August 2012, pp. 137148.
    34. 34)
      • 32. http://www.code.google.com/p/smali, AccessedOctober 2014.
    35. 35)
      • 1. Zhou, Y., Jiang, X.: ‘Dissecting android malware: Characterization and evolution’. Proc. IEEE Symp. on Security and Privacy (SP), San Fransisco, CA, USA, May 2012, pp. 95109.
    36. 36)
      • 12. Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S.A., Albayrak, S.: ‘An android application sandbox system for suspicious software detection’. Fifth Int. Conf. on Malicious and Unwanted Software (MALWARE 2010), Nancy, France, October 2010, pp. 5562.
    37. 37)
      • 40. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (Wiley, 1991).
    38. 38)
    39. 39)
      • 20. Yerima, S.Y., Sezer, S., McWilliams, G., Muttik, I.: ‘A new android malware detection approach using bayesian classification’. Proc. 27th IEEE int. Conf. on Advanced Information Networking and Applications (AINA 2013), Barcelona, Spain, 2013.
    40. 40)
      • 4. Oberheide, J., Cooke, E., Jahanian, F.: ‘Cloudav: N-version antivirus in the network cloud’. Proc. 17th USENIX Security Symp. (Security'08), San Jose, CA, July 2008, pp. 91106.
    41. 41)
      • 10. Kim, J., Yoon, Y., Yi, K., Shin, J.: ‘SCANDAL: static analyzer for detecting privacy leaks in android applications’. Mobile Security Technologies, MoST 2012, San Francisco, May 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2014.0099
Loading

Related content

content/journals/10.1049/iet-ifs.2014.0099
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address