http://iet.metastore.ingenta.com
1887

Human interactive secure key and identity exchange protocols in body sensor networks

Human interactive secure key and identity exchange protocols in body sensor networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A body sensor network (BSN) is typically a wearable wireless sensor network. Security protection is critical to BSNs, since they collect sensitive personal information. Generally speaking, security protection of BSN relies on identity (ID) and key distribution protocols. Most existing protocols are designed to run in general wireless sensor networks, and are not suitable for BSNs. After carefully examining the characteristics of BSNs, the authors propose human interactive empirical channel-based security protocols, which include an elliptic curve Diffie–Hellman version of symmetric hash commitment before knowledge protocol and an elliptic curve Diffie–Hellman version of hash commitment before knowledge protocol. Using these protocols, dynamically distributing keys and IDs become possible. As opposite to present solutions, these protocols do not need any pre-deployment of keys or secrets. Therefore compromised and expired keys or IDs can be easily changed. These protocols exploit human users as temporary trusted third parties. The authors, thus, show that the human interactive channels can help them to design secure BSNs.

References

    1. 1)
      • Halperin, D., Heydt-Benjamin, T.S., Ransford, B.: `Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses', Proc. IEEE SP 08, 2008, Oakland, CA, USA, p. 129–142.
    2. 2)
      • F. Stajano , R. Anderson , B. Christianson , B. Crispo , J.A. Malcolm , M. Roe . (1999) The resurrecting duckling: security issues for ad-hoc wireless networks.
    3. 3)
      • McCune, J.M., Perrig, A., Reiter, M.K.: `Seeing-is-believing: using camera phones for human-verifiable authentication', Proc. IEEE SP 05, 2005, Oakland, CA, USA, p. 110–124.
    4. 4)
      • Saxena, N., Ekberg, J.E., Kostiainen, K., Asokan, N.: `Secure device pairing based on a visual channel', Proc. IEEE SP 06, 2006, Oakland, CA, USA, p. 306–313.
    5. 5)
      • Chen, C.H.O., Chen, C.W., Kuo, C.: `GAnGS: gather, authenticate'n group securely', Proc. ACM MobiCom 08, 2008, San Francisco, CA, USA, p. 92–103.
    6. 6)
      • Y.H. Lin , A. Studer , Y.H. Chen . Spate: small-group pki-less authenticated trust establishment. IEEE Trans. Mob. Comput. , 12 , 1666 - 1681
    7. 7)
      • Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: `Loud and clear: human-verifiable authentication based on audio', Proc. IEEE ICDCS 06, 2006, Lisboa, Portugal, p. 10.
    8. 8)
      • C. Soriente , G. Tsudik , E. Uzun , T.C. Wu , C.L. Lei , V. Rijmen , D.T. Lee . (2008) HAPADEP: human-assisted pure audio device pairing.
    9. 9)
      • S.J. Creese , M.H. Goldsmith , R. Harrison , A.W. Roscoe , P. Whittaker , I. Zakiuddin , D. Hutter , M. Ullmann . (2005) Exploiting empirical engagement in authentication protocol design.
    10. 10)
      • Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: `Talking to strangers: authentication in ad-hoc wireless networks', Proc. NDSS 02, 2002, San Diego, CA, USA, p. 7–19.
    11. 11)
      • C. Gehrmann , K. Nyberg , C.J. Mitchell . (2004) Security in personal area networks.
    12. 12)
      • S. Vaudenay , V. Shoup . (2005) Secure communications over insecure channels based on short authenticated strings.
    13. 13)
      • M. Cagalj , S. Capkun , J.P. Hubaux . Key agreement in peer-to-peer wireless networks. Proc. IEEE , 2 , 467 - 478
    14. 14)
      • F.L. Wong , F. Stajano . Multichannel security protocols. IEEE Pervasive Comput. , 4 , 31 - 39
    15. 15)
      • L.H. Nguyen , A.W. Roscoe . Authenticating ad hoc networks by comparison of short digests. Inf. Comput. , 250 - 271
    16. 16)
      • L.H. Nguyen , A.W. Roscoe . Authentication protocols based on low-bandwidth unspoofable channels: a comparative survey. J. Comput. Sec. , 1 , 139 - 201
    17. 17)
      • A. Perrig , R. Szewczyk , J.D. Tygar , V. Wen , D.E. Culler . SPINS: security protocols for sensor networks. Wirel. Netw. , 5 , 521 - 534
    18. 18)
      • Eschenauer, L., Gligor, V.D.: `A key-management scheme for distributed sensor networks', Proc. ACM CCS 02, 2002, Washington, DC, USA, p. 41–47.
    19. 19)
      • Chan, H.W., Perrig, A., Song, D.: `Random key predistribution schemes for sensor networks', Proc. IEEE SP 03, 2003, Oakland, CA, USA, p. 197.
    20. 20)
      • W. Du , J. Deng , Y.S. Han , P.K. Varshney , J. Katz , A. Khalili . A pairwise key predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst. Sec. , 2 , 228 - 258
    21. 21)
      • Malan, D.J., Welsh, M., Smith, M.D.: `A public-key infrastructure for key distribution in TinyOS based on elliptic curve cryptography', Proc. IEEE SECON 2004, 2004, Santa Clara, CA, USA, p. 71–80.
    22. 22)
      • Huang, Q., Cukier, J., Kobayashi, H., Liu, B., Zhang, J.: `Fast authenticated key establishment protocols for self-organizing sensor networks', Proc. ACM WSNA 03, 2003, San Diego, CA, USA, p. 141–150.
    23. 23)
      • H. Karl , A. Willig . (2005) Protocols and architectures for wireless sensor networks.
    24. 24)
      • Vaidya, N.H.: `Weak duplicate address detection in mobile ad hoc networks', Proc. ACM MobiHoc 02, 2002, Lausanne, Switzerland, p. 206–216.
    25. 25)
      • C.E. Perkins , E.M. Royer , S.R. Das . (2000) IP address autoconfiguration for ad hoc networks.
    26. 26)
      • Nesargi, S., Prakash, R.: `MANETconf: configuration of hosts in a mobile ad hoc network', Proc. IEEE INFOCOM 2002, 2002, New York, USA, p. 1059–1068.
    27. 27)
      • Schurgers, C., Kulkarni, G., Srivastava, M.B.: `Distributed assignment of encoded MAC addresses in sensor networks', Proc. ACM MobiHoc 01, 2001, Long Beach, CA, USA, p. 295–298.
    28. 28)
      • C. Schurgers , G. Kulkarni , M.B. Srivastava . Distributed on-demand address assignment in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. , 10 , 1056 - 1065
    29. 29)
      • D. Dolev , A. Yao . On the security of public key protocols. IEEE Trans. Inf. Theory , 2 , 198 - 208
    30. 30)
      • Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: `Cross-level sensor network simulation with cooja', Proc. IEEE LCN 06, 2006, Tampa, FL, USA, p. 641–648.
    31. 31)
      • Liu, A., Ning, P.: `TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks', Proc. IEEE IPSN 08, 2008, St. Louis, MO, USA, p. 245–256.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2012.0080
Loading

Related content

content/journals/10.1049/iet-ifs.2012.0080
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address