Your browser does not support JavaScript!

Aryabhata remainder theorem-based non-iterative electronic lottery mechanism with robustness

Aryabhata remainder theorem-based non-iterative electronic lottery mechanism with robustness

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The lottery game has been around for centuries and gained the attention of thousands of individuals because of the chance of making a big fortune. It is often launched by a national institute or a legitimate organisation for gathering funds or raising charity monies. In this study, the authors aim to design a new, electronic lottery (e-lottery) system based on Aryabhata remainder theorem, which can help realise e-lottery games. In particular, the new mechanism can guarantee the security of this popular game involving the potential for a lot of money.


    1. 1)
      • 11. Krawczyk, H., Bellare, M., Canetti, R.: ‘HMAC: keyed-hashing for message authentication’, RFC 2104, Internet Engineering Task Force (IETF), February 1997. Available at:
    2. 2)
      • 15. Kushilevitz, E., Rabin, T.: ‘Fair E-lotteries and E-Casinos’. Proc. Cryptographer's Track at RSA Conf. 2001, San Francisco, CA, USA, April 2001, pp. 100109.
    3. 3)
      • 17. Zhou, J., Tan, C.: ‘Playing lottery on the internet’. Proc. Third Int. Conf. Information and Communications Security (ICICS 2001), Xian, China, November 2001, pp. 189201.
    4. 4)
      • 9. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: ‘Handbook of applied cryptography’ (CRC Press, 1996).
    5. 5)
      • 4. Rossudowski, A.M., Venter, H.S., Eloff, J.H.P., Kourie, D.G.: ‘A security privacy aware architecture and protocol for a single smart card used for multiple services’, Comput. Secur., 2010, 29, (4), pp. 393409 (doi: 10.1016/j.cose.2009.12.001).
    6. 6)
      • 2. Haakana, M., Sorjonen, M.L.: ‘Invoking another context: playfulness in buying lottery tickets at convenience stores’, J. Pragmat., 2011, 43, (5), pp. 12881302 (doi: 10.1016/j.pragma.2010.10.029).
    7. 7)
      • 1. Lee, J.S., Chang, C.C.: ‘Design of electronic t-out-of-n lotteries on the internet’, Comput. Stand. Interfaces, 2009, 31, (2), pp. 395400 (doi: 10.1016/j.csi.2008.05.004).
    8. 8)
      • 3. Eslami, Z., Talebi, M.: ‘A new untraceable off-line electronic cash system’, Electron. Comm. Res. Appl., 2011, 10, (1), pp. 5966 (doi: 10.1016/j.elerap.2010.08.002).
    9. 9)
      • 12. The Keyed-Hash Message Authentication Code (HMAC)’, FIPS PUB 198, US National Institute of Standards & Technology (FIPS), March 2002. Available at:
    10. 10)
      • 5. Chang, C.C., Chang, S.C., Lee, J.S.: ‘An on-line electronic check system with mutual authentication’, Comput. Electr. Eng., 2009, 35, (5), pp. 757763 (doi: 10.1016/j.compeleceng.2009.02.007).
    11. 11)
      • 10. Rao, T.R.N., Yang, C.H.: ‘Aryabhata remainder theorem: relevance to public-key crypto-algorithms’, Circuits Syst. Signal Process., 2006, 25, (1), pp. 115 (doi: 10.1007/s00034-005-1123-6).
    12. 12)
      • 13. Rivest, R.L., Shamir, A., Adleman, L.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, (2), pp. 120126 (doi: 10.1145/359340.359342).
    13. 13)
      • 14. Goldschlag, D.M., Stubblebine, S.G.: ‘Publicly verifiable lotteries: applications of delaying functions’. Proc. Second Int. Conf. Financial Cryptography (FC'98), Anguilla, British West Indies, February 1998, pp. 214226.
    14. 14)
      • 7. Chaum, D.: ‘Blind signatures for untraceable payments’. Proc. Advances in Cryptology-CRYPTO'82, (LNCS, 1440), 1983, pp. 199203.
    15. 15)
      • 16. Sako, K.: ‘Implementation of a digital lottery server on WWW’. Proc. Int. Exhibition and Congress on Secure Networking, Germany, 1999, pp. 101108.
    16. 16)
      • 6. Lee, J.S., Chan, C.S., Chang, C.C.: ‘Non-iterative privacy preservation for online lotteries’, IET Inf. Secur., 2009, 3, (4), pp. 139147 (doi: 10.1049/iet-ifs.2008.0104).
    17. 17)
      • 8. Chaum, D., Fiat, A., Naor, M.: ‘Untraceable electronic cash’. Proc. Advances in Cryptology-CRYPTO'88, (LNCS, 403), 1990, pp. 319327.

Related content

This is a required field
Please enter a valid email address