Aryabhata remainder theorem-based non-iterative electronic lottery mechanism with robustness
Aryabhata remainder theorem-based non-iterative electronic lottery mechanism with robustness
- Author(s): Jung-San Lee ; Wei-Chiang Kao ; Bo Li
- DOI: 10.1049/iet-ifs.2011.0327
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): Jung-San Lee 1 ; Wei-Chiang Kao 1 ; Bo Li 2
-
-
View affiliations
-
Affiliations:
1:
Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40724, Taiwan;
2: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
-
Affiliations:
1:
Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40724, Taiwan;
- Source:
Volume 7, Issue 3,
September 2013,
p.
172 – 180
DOI: 10.1049/iet-ifs.2011.0327 , Print ISSN 1751-8709, Online ISSN 1751-8717
The lottery game has been around for centuries and gained the attention of thousands of individuals because of the chance of making a big fortune. It is often launched by a national institute or a legitimate organisation for gathering funds or raising charity monies. In this study, the authors aim to design a new, electronic lottery (e-lottery) system based on Aryabhata remainder theorem, which can help realise e-lottery games. In particular, the new mechanism can guarantee the security of this popular game involving the potential for a lot of money.
Inspec keywords: computer games; number theory; game theory
Other keywords: e-lottery games; national institute; Aryabhata remainder theorem-based noniterative electronic lottery mechanism; charity monies; funds gathering; legitimate organisation; e-lottery system
Subjects: Combinatorial mathematics; Computer games
References
-
-
1)
-
11. Krawczyk, H., Bellare, M., Canetti, R.: ‘HMAC: keyed-hashing for message authentication’, RFC 2104, Internet Engineering Task Force (IETF), February 1997. Available at: http://www.tools.ietf.org/rfc/rfc2104.txt.
-
-
2)
-
15. Kushilevitz, E., Rabin, T.: ‘Fair E-lotteries and E-Casinos’. Proc. Cryptographer's Track at RSA Conf. 2001, San Francisco, CA, USA, April 2001, pp. 100–109.
-
-
3)
-
17. Zhou, J., Tan, C.: ‘Playing lottery on the internet’. Proc. Third Int. Conf. Information and Communications Security (ICICS 2001), Xian, China, November 2001, pp. 189–201.
-
-
4)
-
9. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: ‘Handbook of applied cryptography’ (CRC Press, 1996).
-
-
5)
-
4. Rossudowski, A.M., Venter, H.S., Eloff, J.H.P., Kourie, D.G.: ‘A security privacy aware architecture and protocol for a single smart card used for multiple services’, Comput. Secur., 2010, 29, (4), pp. 393–409 (doi: 10.1016/j.cose.2009.12.001).
-
-
6)
-
2. Haakana, M., Sorjonen, M.L.: ‘Invoking another context: playfulness in buying lottery tickets at convenience stores’, J. Pragmat., 2011, 43, (5), pp. 1288–1302 (doi: 10.1016/j.pragma.2010.10.029).
-
-
7)
-
1. Lee, J.S., Chang, C.C.: ‘Design of electronic t-out-of-n lotteries on the internet’, Comput. Stand. Interfaces, 2009, 31, (2), pp. 395–400 (doi: 10.1016/j.csi.2008.05.004).
-
-
8)
-
3. Eslami, Z., Talebi, M.: ‘A new untraceable off-line electronic cash system’, Electron. Comm. Res. Appl., 2011, 10, (1), pp. 59–66 (doi: 10.1016/j.elerap.2010.08.002).
-
-
9)
-
12. ‘The Keyed-Hash Message Authentication Code (HMAC)’, FIPS PUB 198, US National Institute of Standards & Technology (FIPS), March 2002. Available at: http://www.csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.
-
-
10)
-
5. Chang, C.C., Chang, S.C., Lee, J.S.: ‘An on-line electronic check system with mutual authentication’, Comput. Electr. Eng., 2009, 35, (5), pp. 757–763 (doi: 10.1016/j.compeleceng.2009.02.007).
-
-
11)
-
10. Rao, T.R.N., Yang, C.H.: ‘Aryabhata remainder theorem: relevance to public-key crypto-algorithms’, Circuits Syst. Signal Process., 2006, 25, (1), pp. 1–15 (doi: 10.1007/s00034-005-1123-6).
-
-
12)
-
13. Rivest, R.L., Shamir, A., Adleman, L.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, (2), pp. 120–126 (doi: 10.1145/359340.359342).
-
-
13)
-
14. Goldschlag, D.M., Stubblebine, S.G.: ‘Publicly verifiable lotteries: applications of delaying functions’. Proc. Second Int. Conf. Financial Cryptography (FC'98), Anguilla, British West Indies, February 1998, pp. 214–226.
-
-
14)
-
7. Chaum, D.: ‘Blind signatures for untraceable payments’. Proc. Advances in Cryptology-CRYPTO'82, (LNCS, 1440), 1983, pp. 199–203.
-
-
15)
-
16. Sako, K.: ‘Implementation of a digital lottery server on WWW’. Proc. Int. Exhibition and Congress on Secure Networking, Germany, 1999, pp. 101–108.
-
-
16)
-
6. Lee, J.S., Chan, C.S., Chang, C.C.: ‘Non-iterative privacy preservation for online lotteries’, IET Inf. Secur., 2009, 3, (4), pp. 139–147 (doi: 10.1049/iet-ifs.2008.0104).
-
-
17)
-
8. Chaum, D., Fiat, A., Naor, M.: ‘Untraceable electronic cash’. Proc. Advances in Cryptology-CRYPTO'88, (LNCS, 403), 1990, pp. 319–327.
-
-
1)

Related content
