OPF-based security redispatching including FACTS devices
OPF-based security redispatching including FACTS devices
- Author(s): R. Zárate-Miñano ; A.J. Conejo ; F. Milano
- DOI: 10.1049/iet-gtd:20080064
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): R. Zárate-Miñano 1 ; A.J. Conejo 1 ; F. Milano 1
-
-
View affiliations
-
Affiliations:
1: Department of Electrical Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
-
Affiliations:
1: Department of Electrical Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
- Source:
Volume 2, Issue 6,
November 2008,
p.
821 – 833
DOI: 10.1049/iet-gtd:20080064 , Print ISSN 1751-8687, Online ISSN 1751-8695
An Optimal Power Flow (OPF)-based security-driven redispatching procedure to archive an appropriate security level is provided. The proposed procedure is particularly suited for security redispatching by an independent system operator. This procedure uses full ac equations and explicitly considers security limits through a stressed loading condition. Furthermore, a variety of FACTS devices can be incorporated in the redispatching problem to enhance system security. Several case studies based on the IEEE 24-bus system and on a real size model of the Italian system are analysed and discussed.
Inspec keywords: load dispatching; power system security; load flow; flexible AC transmission systems
Other keywords:
Subjects: Power system management, operation and economics; a.c. transmission
References
-
-
1)
- Schaffner, C., Andersson, G.: `Valuating controllable devices in congested networks', Proc. Bulk Power System Dynamics and Control VI Conf., 2004, Italy, Cortina d'Ampezzo.
-
2)
- The MathWorks, Inc.: ‘MATLAB programming', http://www.mathworks.com, 2005.
-
3)
- W. Shao , V. Vittal . LP-based OPF for corrective FACTS control to relieve overloads and voltage violations. IEEE Trans. Power Syst. , 4 , 1832 - 1839
-
4)
- R. Palma-Behnke , L.S. Vargas , J.R. Pérez , J.D. Núñez , R.A. Torres . OPF with SVC and UPFC modeling for longitudinal systems. IEEE Trans. Power Syst. , 4 , 1742 - 1753
-
5)
- The IEEE Reliability Test System – 1996. IEEE Trans. Power Syst. , 3 , 1010 - 1020
-
6)
- C.R. Fuerte-Esquivel , E. Acha , H. Ambriz-Pérez . A thyristor controlled series compensator model for the power flow solution of practical power networks. IEEE Trans. Power Syst. , 1 , 58 - 64
-
7)
- W.D. Rosehart , C.A. Cañizares , V. Quintana . Multi-objective optimal power flows to evaluate voltage security costs in power networks. IEEE Trans. Power Syst. , 2 , 578 - 587
-
8)
- Conejo, A.J.: `The electricity market of mainland Spain: a brief critical review', Proc. IEEE PES General Meeting, 2007, Tampa, Florida.
-
9)
- F. Milano , C.A. Cañizares , M. Invernizzi . Multi-objective optimization for pricing system security in electricity markets. IEEE Trans. Power Syst. , 2 , 596 - 604
-
10)
- E. Bompard , P. Correia , G. Gross , M. Amalin . Congestion management schemes: a comparative analysis under a unified framework. IEEE Trans. Power Syst. , 1 , 346 - 352
-
11)
- C. Lehmköster . Security Constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets. IEEE Trans. Power Deliv. , 2 , 603 - 608
-
12)
- Milano, F.: `Pricing system security in electricity market models with inclusion of voltage stability constraints', 2003, PhD, University of Genova, Genova, Italy, http://www.uclm.es/area/gsee/Web/Federico.
-
13)
- F. Milano , C.A. Cañizares , M. Invernizzi . Voltage stability constrained OPF market models considering N−1 contingency criteria. Electric Power Syst. Res. , 1 , 27 - 36
-
14)
- K. Xie , Y.-H. Song , J. Stonham , E. Yu , G. Liu . Decomposition model and interior point methods for optimal spot pricing of electricity in deregulation environments. IEEE Trans. Power Syst. , 1 , 39 - 50
-
15)
- Drud A.S. ‘GAMS/CONOPT, GAMS. The solver manuals’, http://www.gams.com/, 2005.
-
16)
- A. Berizzi , M. Delfanti , P. Marannino , M. Savino , A. Silvestri . Enhanced security-constrained OPF with FACTS devices. IEEE Trans. Power Syst. , 3 , 1597 - 1605
-
17)
- F. Milano , C.A. Cañizares , A.J. Conejo . Sensitivity-based security-constrained OPF market clearing model. IEEE Trans. Power Syst. , 4 , 2051 - 2060
-
18)
- Schaffner, C., Andersson, G.: `Determining the value of controllable devices in a liberalized electricity market', IEEE Power Tech, 2003, Bologna, Italy.
-
19)
- E. Acha , H. Ambriz-Pérez , C.R. Fuerte-Esquivel . Advanced transformer control modeling in an optimal power flow using newton's method. IEEE Trans. Power Syst. , 1 , 290 - 298
-
20)
- T.W. Gedra . On transmission congestion and pricing. IEEE Trans. Power Syst. , 1 , 241 - 248
-
21)
- Rosehart, W., Cañizares, C.A., Quintana, V.H.: `Optimal power flow incorporating voltage collapse constraints', Proc. IEEE PES Summer Meeting, 1999, Edmonton, Alberta.
-
22)
- R. Mínguez , F. Milano , R. Zárate-Miñano , A. Conejo . Optimal network placement of SVC devices. IEEE Trans. Power Syst. , 4 , 1851 - 1860
-
23)
- H. Ambriz-Pérez , E. Acha , C.R. Fuerte-Esquivel . Advanced SVC models for Newton–Raphson load flow and Newton optimal power flow studies. IEEE Trans. Power Syst. , 1 , 129 - 136
-
24)
- Hug-Glanzmann, G., Andersson, G.: `Incorporation of ', Proc. Power System Conference & Exposition (PSCE), Atlanta, 2006, Georgia.
-
25)
- M.A. Bolton , D.J. Hill , R.J. Kaye . Designing ancillary services markets for power system security. IEEE Trans. Power Syst. , 2 , 675 - 680
-
26)
- A.J. Conejo , F. Milano , R. García-Bertrand . Congestion management ensuring voltage stability. IEEE Trans. Power Syst. , 1 , 357 - 364
-
1)

Related content
