Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

General sensitivity formulas for maximum loading conditions in power systems

General sensitivity formulas for maximum loading conditions in power systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

General sensitivity formulas for maximum loading conditions of nonlinear power systems have been proposed. The proposed formulas allow computing the sensitivities of any system variable and, in particular, of the maximum loading margin with respect to arbitrary parameters. This approach extends previous results. It has also been shown that the sensitivity formulae available in the literature for static saddle-node and limit-induced bifurcation points are particular cases of the proposed general formulae. Two benchmark systems, namely a 6-bus system and the IEEE RTS-96 24-bus tests system, are used to illustrate and test the proposed technique.

References

    1. 1)
    2. 2)
      • K. Xie , Y.-H. Song , J. Stonham , E. Yu , G. Liu . Decomposition model and interior point methods for optimal spot pricing of electricity in deregulation environments. IEEE Trans. Power Syst. , 1 , 39 - 50
    3. 3)
      • Cañizares, C.A.: `Voltage stability assessment: concepts, practices and tools', SP101PSS-2002, IEEE/PES power system stability subcommittee, Final Document, Tech, 2002, available at: http://www.power.uwaterloo.ca.
    4. 4)
      • C.A. Cañizares , C. Cavallo , M. Pozzi , S. Corsi . Comparing secondary voltage regulation and shunt compensation for improving voltage stability and transfer capability in the Italian power system. Elect. Power Syst. Research , 2 , 67 - 76
    5. 5)
      • Cañizares, C.A., Rosehart, W., Berizzi, A., Bovo, C.: `Comparison of voltage security constrained optimal power flow techniques', Proc. IEEE-PES Summer Meeting, 2001, Vancouver, BC, Canada.
    6. 6)
      • I. Dobson , L. Lu . Voltage collapse precipitated by the immediate change of stability when generator reactive power limits are encountered. IEEE Trans. Circuits Syst. - I: Fundamental Theory and Appl. , 9 , 762 - 766
    7. 7)
    8. 8)
    9. 9)
      • F. Milano , C.A. Cañizares , M. Invernizzi . Multi-objective optimization for pricing system security in electricity markets. IEEE Trans. Power Syst. , 2
    10. 10)
    11. 11)
    12. 12)
      • M.S. Bazaraa , H.D. Sherali , C.M. Shetty . (1993) Nonlinear programming, theory and algorithms.
    13. 13)
      • C.A. Cañizares . UWPFLOW Program.
    14. 14)
    15. 15)
      • The MathWorks, Inc. Matlab Programming 2005 available at http://www.mathworks.com.
    16. 16)
      • A.V. Fiacco . (1983) Introduction to sensitivity analysis in nonlinear programming.
    17. 17)
    18. 18)
      • C.A. Cañizares . Calculating optimal system parameters to maximize the distance to saddle-node bifurcations. IEEE Trans. Circuits Syst. - I: Fundamental Theory and Appl. , 3 , 225 - 237
    19. 19)
    20. 20)
    21. 21)
      • Cañizares, C.A.: `Applications of optimization to voltage collapse analysis', IEEE-PES Summer Meeting, 1998, San Diego, USA.
    22. 22)
    23. 23)
    24. 24)
      • F. Milano , C.A. Cañizares , M. Invernizzi . Voltage stability constrained OPF market models considering N-1 contingency criteria. Electric Power Syst. Research , 1 , 27 - 36
    25. 25)
      • H.-D. Chiang , I. Dobson , R.J. Thomas , J.S. Thorp , L. Fekih-Ahmed . On Voltage collapse in electric power system. IEEE Trans. Power Syst. , 601 - 611
    26. 26)
      • I. Dobson . Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems. IEEE Trans. Circuits Syst. - I: Fundamental Theory and Appl. , 3 , 240 - 243
    27. 27)
      • Reliability test system task force of the application of probability methods subcommittee. The IEEE Reliability Test System - 1996, PES , 3 , 1010 - 1020
    28. 28)
      • C.A. Cañizares , F.L. Alvarado , C.L. DeMarco , I. Dobson , W.F. Long . Point of collapse method applied to AC/DC power systems. IEEE Trans. Power Syst. , 2 , 673 - 683
    29. 29)
    30. 30)
      • T. Van Cutsem , C. Vournas . (1998) Voltage stability of electric power systems.
    31. 31)
      • D.G. Luenberger . (1989) Linear and nonlinear programming.
    32. 32)
    33. 33)
      • A.S. Drud . GAMS/CONOPT.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd_20060407
Loading

Related content

content/journals/10.1049/iet-gtd_20060407
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address