General sensitivity formulas for maximum loading conditions in power systems
General sensitivity formulas for maximum loading conditions in power systems
- Author(s): F. Milano ; A.J. Conejo ; R. Zárate-Miñano
- DOI: 10.1049/iet-gtd:20060407
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): F. Milano 1 ; A.J. Conejo 1 ; R. Zárate-Miñano 1
-
-
View affiliations
-
Affiliations:
1: Department of Electrical Engineering, University of Castilla-La Mancha, Spain
-
Affiliations:
1: Department of Electrical Engineering, University of Castilla-La Mancha, Spain
- Source:
Volume 1, Issue 3,
May 2007,
p.
516 – 526
DOI: 10.1049/iet-gtd:20060407 , Print ISSN 1751-8687, Online ISSN 1751-8695
- « Previous Article
- Table of contents
- Next Article »
General sensitivity formulas for maximum loading conditions of nonlinear power systems have been proposed. The proposed formulas allow computing the sensitivities of any system variable and, in particular, of the maximum loading margin with respect to arbitrary parameters. This approach extends previous results. It has also been shown that the sensitivity formulae available in the literature for static saddle-node and limit-induced bifurcation points are particular cases of the proposed general formulae. Two benchmark systems, namely a 6-bus system and the IEEE RTS-96 24-bus tests system, are used to illustrate and test the proposed technique.
Inspec keywords: load flow; bifurcation
Other keywords:
Subjects: Power systems
References
-
-
1)
- A.J. Flueck , R. Gonella , J. Dondeti . A New power sensitivity method of ranking branch contingencies for voltage collapse. IEEE Trans. Power Syst. , 2 , 265 - 270
-
2)
- K. Xie , Y.-H. Song , J. Stonham , E. Yu , G. Liu . Decomposition model and interior point methods for optimal spot pricing of electricity in deregulation environments. IEEE Trans. Power Syst. , 1 , 39 - 50
-
3)
- Cañizares, C.A.: `Voltage stability assessment: concepts, practices and tools', SP101PSS-2002, IEEE/PES power system stability subcommittee, Final Document, Tech, 2002, available at: http://www.power.uwaterloo.ca.
-
4)
- C.A. Cañizares , C. Cavallo , M. Pozzi , S. Corsi . Comparing secondary voltage regulation and shunt compensation for improving voltage stability and transfer capability in the Italian power system. Elect. Power Syst. Research , 2 , 67 - 76
-
5)
- Cañizares, C.A., Rosehart, W., Berizzi, A., Bovo, C.: `Comparison of voltage security constrained optimal power flow techniques', Proc. IEEE-PES Summer Meeting, 2001, Vancouver, BC, Canada.
-
6)
- I. Dobson , L. Lu . Voltage collapse precipitated by the immediate change of stability when generator reactive power limits are encountered. IEEE Trans. Circuits Syst. - I: Fundamental Theory and Appl. , 9 , 762 - 766
-
7)
- S. Greene , I. Dobson , F.L. Alvarado . Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters. IEEE Trans. Power Syst. , 1 , 262 - 272
-
8)
- W.D. Rosehart , C.A. Cañizares , V. Quintana . Multi-Objective optimal power flows to evaluate voltage security costs in power networks. IEEE Trans. Power Syst. , 2 , 578 - 587
-
9)
- F. Milano , C.A. Cañizares , M. Invernizzi . Multi-objective optimization for pricing system security in electricity markets. IEEE Trans. Power Syst. , 2
-
10)
- F. Capitanescu , T. Van Cutsem . Unified sensitivity analysis of unstable or low voltages caused by load increases or contingencies. IEEE Trans. Power Syst. , 1 , 321 - 329
-
11)
- M. Begovic , A.G. Phadke . Control of voltage stability using sensitivity analysis. IEEE Trans. Power Syst. , 1 , 114 - 123
-
12)
- M.S. Bazaraa , H.D. Sherali , C.M. Shetty . (1993) Nonlinear programming, theory and algorithms.
-
13)
- C.A. Cañizares . UWPFLOW Program.
-
14)
- A.J. Conejo , E. Castillo , R. Minguez , F. Milano . Locational marginal price sensitivities. IEEE Trans. Power Syst. , 4 , 2026 - 2033
-
15)
- The MathWorks, Inc. Matlab Programming 2005 available at http://www.mathworks.com.
-
16)
- A.V. Fiacco . (1983) Introduction to sensitivity analysis in nonlinear programming.
-
17)
- S. Greene , I. Dobson , F.L. Alvarado . Contingency ranking for voltage collapse via sensitivities from single nose curve. IEEE Trans. Power Syst. , 1 , 232 - 240
-
18)
- C.A. Cañizares . Calculating optimal system parameters to maximize the distance to saddle-node bifurcations. IEEE Trans. Circuits Syst. - I: Fundamental Theory and Appl. , 3 , 225 - 237
-
19)
- E. Castillo , A.J. Conejo , C. Castillo , R. Mínguez , D. Ortigosa . Perturbation approach to sensibility analysis in mathematical programming. J. Optim. Theory and Appl. , 1 , 49 - 74
-
20)
- F. Capitanescu , T. Van Cutsem . Preventive control of voltage security margins: a multicontingency sensitivity-based approach. IEEE Trans. Power Syst. , 2 , 358 - 364
-
21)
- Cañizares, C.A.: `Applications of optimization to voltage collapse analysis', IEEE-PES Summer Meeting, 1998, San Diego, USA.
-
22)
- V. Ajjarapu , C. Christy . The continuation power flow: a tool for steady state voltage stability analysis. IEEE Trans. Power Syst. , 1 , 416 - 423
-
23)
- T. Orfanogianni , R. Bacher . Steady-state optimization in power system with series FACTS devices. IEEE Trans. Power Syst. , 1 , 19 - 26
-
24)
- F. Milano , C.A. Cañizares , M. Invernizzi . Voltage stability constrained OPF market models considering N-1 contingency criteria. Electric Power Syst. Research , 1 , 27 - 36
-
25)
- H.-D. Chiang , I. Dobson , R.J. Thomas , J.S. Thorp , L. Fekih-Ahmed . On Voltage collapse in electric power system. IEEE Trans. Power Syst. , 601 - 611
-
26)
- I. Dobson . Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems. IEEE Trans. Circuits Syst. - I: Fundamental Theory and Appl. , 3 , 240 - 243
-
27)
- Reliability test system task force of the application of probability methods subcommittee. The IEEE Reliability Test System - 1996, PES , 3 , 1010 - 1020
-
28)
- C.A. Cañizares , F.L. Alvarado , C.L. DeMarco , I. Dobson , W.F. Long . Point of collapse method applied to AC/DC power systems. IEEE Trans. Power Syst. , 2 , 673 - 683
-
29)
- T. Van Cutsem . A Method to compute reactive power margins with respect to voltage collapse. IEEE Trans. Power Syst. , 145 - 156
-
30)
- T. Van Cutsem , C. Vournas . (1998) Voltage stability of electric power systems.
-
31)
- D.G. Luenberger . (1989) Linear and nonlinear programming.
-
32)
- S. Greene , I. Dobson , F.L. Alvarado . Sensitivity of transfer capability margins with a fast formula. IEEE Trans. Power Syst. , 1 , 34 - 40
-
33)
- A.S. Drud . GAMS/CONOPT.
-
1)