Steady state formulation of FACTS devices based on ac/ac converters

Access Full Text

Steady state formulation of FACTS devices based on ac/ac converters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here the analysis on the inclusion of a pulse width modulated (PWM) ac link unified power flow controller into a power flow program is discussed. Similarly, a PWM series compensator is connected to the power system to regulate the active power flow on the corresponding transmission line. Details of the Newton–Raphson's power flow algorithm are exhibited. Results of simulation are presented on a 39-buses power system.

Inspec keywords: power transmission control; flexible AC transmission systems; AC-AC power convertors; power transmission lines; Newton-Raphson method; load flow control

Other keywords: power system; unified power flow controller; pulse width modulated AC link; Newton-Raphson power flow algorithm; FACTS device; transmission line; steady state formulation; AC-AC converter

Subjects: a.c. transmission; Power convertors and power supplies to apparatus; Control of electric power systems; Power system control; Interpolation and function approximation (numerical analysis); Power transmission lines and cables; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • P. Matavelli , G. Verghese , A.M. Stankovic . Phasor dynamics of thyristor – controlled series capacitor systems. IEEE Trans. Power Syst. , 3 , 1259 - 1267
    2. 2)
      • G. Venkataramanan . Three-phase vector switching converters for power flow control. IEE Proc., Electr. Power Appl. , 3 , 321 - 333
    3. 3)
      • C.R. Fuerte-Esquivel , E. Acha . Unified power flow controller: a critical comparison of Newton–Raphson UPFC algorithms in power flow studies. IEE Proc., Gener. Transm. Distrib. , 5 , 437 - 444
    4. 4)
      • K.K. Sen , E.J. Stacey . UPFC – Unified power flow controller: theory, modeling, and applications. IEEE Trans. Power Deliv. , 4 , 1453 - 1460
    5. 5)
      • A.T. Johns , A. Ter-Gazarian , D.F. Warne . (1999) Flexible AC transmission systems (FACTS).
    6. 6)
      • Gyugyi, L.: `Application characteristics of converter-based FACTS controllers', Proc. Int. Conf. Power System Technology (PowerCon 2000), December 2000, 1, Piscataway, NJ, USA, p. 391–396.
    7. 7)
      • Y. Chen , B.T. Ooi . STATCOM based on multimodules of multilevel converters under multiple regulation feedback control. IEEE Trans. Power Electron. , 5 , 959 - 965
    8. 8)
      • Mancilla-David, F., Venkataramanan, G.: `A pulse width modulated AC link unified power flow controller', Proc. 2005 IEEE Power Engineering Society General Meeting, , San Francisco, CA, USA.
    9. 9)
      • C.R. Fuerte-esquivel , E. Acha . Unified power flow controller: a critical comparison of newton–Raphson UPFC algorithms in power flow studies. IEE Proc., Gener. Transm. Distrib. , 5 , 437 - 444
    10. 10)
      • N.G. Hingorani , L. Gyugyi . (1999) Understanding FACTS.
    11. 11)
      • B.T. Ooi , S.-Z. Dai . Series-type solid-state static VAR compensator. IEEE Trans. Power Electron. , 2 , 164 - 169
    12. 12)
      • (1995) FACTS overview, IEEE Press.
    13. 13)
      • C.A. Canizares , Z.T. Four . Analysis for SVC and TCSC controllers in voltage collapse. IEEE Trans. Power Syst. , 1 , 158 - 165
    14. 14)
      • K.R. Padiyar . (2002) Power system dynamics stability and control.
    15. 15)
      • B.K. Perkins , M.R. Iravani . Dynamic modeling of high power static switching circuits in the dq-frame. IEEE Trans. Power Syst. , 2 , 678 - 684
    16. 16)
      • L. Gyugyi , C.D. Schauder , K.K. Sen . Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines. IEEE Trans. Power Deliv. , 1 , 406 - 417
    17. 17)
      • (1996) FACTS applications.
    18. 18)
      • P. Wheeler , J. Clare , L. Empringham , M. Apap , M. Bland . Matrix converters. Power Eng. J. , 6 , 273 - 282
    19. 19)
      • Nabavi-niaki, A., Iravani, M.R.: `Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies', IEEE/PES Winter Meeting '96 WM 257-6 PWRS, 21–25 January 1996, Baltimore, MD.
    20. 20)
      • D. Gotham , G.T. Heydt . Power flow control and power flow studies for systems with FACTS devices. IEEE Trans. Power Syst. , 1 , 60 - 65
    21. 21)
      • F.Z. Peng , L. Chen , F. Zhang . Simple topologies of PWM AC-AC converters. IEEE Power Electron. Lett. , 1 , 10 - 13
    22. 22)
      • G. Venkataramanan , B.K. Johnson . Pulse width modulated series compensator. IEE Proc., Gener. Transm. Distrib. , 1 , 71 - 75
    23. 23)
      • O. Simon , J. Mahlein , M.N. Muenzer , M. Bruckmann . Modern solutions for industrial matrix-converter applications. IEEE Trans. Ind. Electron. , 2 , 401 - 406
    24. 24)
      • I. Dobson . Stability of ideal thyristor and diode switching circuits. IEEE Trans. Circ. Syst. , 12 , 517 - 529
    25. 25)
      • B.T. Ooi , M. Kazerani . Voltage-source matrix converter as a controller in flexible AC transmission systems. IEEE Trans. Power Deliv. , 1 , 247 - 253
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd_20060329
Loading

Related content

content/journals/10.1049/iet-gtd_20060329
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading