Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Decentralised power distribution and SOC management algorithm for the hybrid energy storage of shipboard integrated power system

In the medium voltage direct current (MVDC) shipboard grid, the inherent inertial support from the DC capacitors is too small to resist step changes or fluctuations from the high power pulse load and propulsion load, which results in lower DC voltage quality. This study proposes a decentralised control algorithm for the MVDC shipboard hybrid energy storage system (HESS) to enhance the onboard survivability. This algorithm adjusts the droop control coefficient based on the bus voltage change rate adaptively, meanwhile the voltage differential signal processing and filtering are implemented by the trace differentiator. In addition, the proposed algorithm also has state-of-charge (SOC) balancing and SOC recovery abilities between multiple groups of energy storage devices. The parameter selection principle are analysed, and a variety of working conditions are simulated and verified in PSCAD. Theoretical analysis and simulation show that, HESS can achieve good power distribution and SOC management performance without communication compared to fixed droop coefficient control strategies, and the dynamic characteristics of bus voltage have been significantly improved.

References

    1. 1)
      • 26. Industry, C., Applications, I.: ‘IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships IEEE Industry Applications Society’, 2010.
    2. 2)
      • 7. Jie, W.U., Ming, D.: ‘Wind power fluctuation smoothing strategy of hybrid energy storage system using self-adaptive wavelet packet decomposition’, Autom. Electr. Power Syst., 2017, 41, (3), pp. 712.
    3. 3)
      • 15. Meng, R., Liu, J., Wen, B., et al: ‘Hybrid energy storage control and system hierarchical coordinated control strategy for DC microgrids’, High Volt. Eng., 2015, 41, (7), pp. 21862193.
    4. 4)
      • 16. Meifu, C., Xin, Z., Xinmin, J., et al: ‘Research on parallel control strategy of hybrid energy storage units in DC microgrid’, Trans. China Electrotechnical Soc., 2016, 31, (A2), pp. 142149.
    5. 5)
      • 3. Gao, X.-P., Fu, L.-J., Hu, J., et al: ‘Voltage stability analysis of DC ship power system with pulse load’, J. Eng., 2018, 2019, (16), pp. 20272031.
    6. 6)
      • 12. Unamuno, E., Barrena, J.A.: ‘Design and small-signal stability analysis of a virtual-capacitor control for DC microgrids’. 2017 19th European Conf. on Power Electronics and Applications, Janua, 2017, pp. 110.
    7. 7)
      • 21. Xiaonan, L., Josep, M.G., Kai, S., et al: ‘An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy’, IEEE Trans. Power Electron., 2013, 29, (4), pp. 18001812.
    8. 8)
      • 17. Jin, Z., Meng, L., Vasquez, J.C., et al: ‘Frequency-division power sharing and hierarchical control design for DC shipboard microgrids with hybrid energy storage systems’. Conf. Proc. - IEEE Applied Power Electronics Conf. and Exposition - APEC, Tampa, FL, 2017, pp. 36613668.
    9. 9)
      • 9. Jihong, Z., Hongming, W., Yili, W., et al: ‘Hierarchical control strategy of voltage fluctuation in DC microgrid consisting gas-turbine generator and HESS’, Trans. China Electrotechnical Soc., 2018, 33, (6), pp. 12381246.
    10. 10)
      • 10. Wang, Y., Wang, C., Xu, L., et al: ‘Adjustable inertial response from the converter with adaptive droop control in DC grids’, IEEE Trans. Smart Grid, 2019, 10, (3), pp. 31983209.
    11. 11)
      • 13. Yan, X., Congcong, B., Yuan, F.: ‘Virtual inertia control strategy at energy-storage terminal in DC microgrid’. 2017 IEEE Conf. on Energy Internet and Energy System Integration EI2 2017 - Proc., Beijing, China, 2017, pp. 15.
    12. 12)
      • 23. Zhao, X., Li, Y.W., Tian, H., et al: ‘Energy management strategy of multiple supercapacitors in a DC microgrid using adaptive virtual impedance’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 4, (4), pp. 11741185.
    13. 13)
      • 8. Hou, J., Sun, J., Hofmann, H.: ‘Interaction analysis and integrated control of hybrid energy storage and generator control system for electric ship propulsion’. Proc. of the American Control Conf., Chicago, Illinois, 2015, pp. 49884993.
    14. 14)
      • 18. Zhu, X., Xie, Z., Jing, S., et al: ‘Distributed virtual inertia control and stability analysis of dc microgrid’, IET Gener. Trans. Distrib., 2018, 12, (14), pp. 34773486.
    15. 15)
      • 2. Domaschk, L.N., Ouroua, A., Hebner, R.E.: ‘Coordination of large pulsed loads on future electric ships’, IEEE Trans. Magn., 2007, 43, (1), pp. 450455.
    16. 16)
      • 28. Cupelli, M., Gurumurthy, S.K., Monti, A.: ‘Modelling and control of single phase DAB based MVDC shipboard power system institute for automation of complex power systems’. IECON 2017 - 43rd Annual Conf. of the IEEE Industrial Electronics Society, Beijing, 2017, pp. 68136819.
    17. 17)
      • 25. Pengcheng, L.I., Chunjiang, Z., Ranran, Y., et al: ‘Load Current Sharing Method of Distributed Energy Storage Systems by Improved SOC Drooping Control’. Proc. of the CSEE, 2017, 37, (13), pp. 37463754.
    18. 18)
      • 4. Hou, J., Sun, J., Hofmann, H.F.: ‘Mitigating power fluctuations in electric ship propulsion with hybrid energy storage system: design and analysis’, IEEE J. Ocean. Eng., 2018, 43, (1), pp. 93107.
    19. 19)
      • 30. Han, J.: ‘From PID to active disturbance rejection control’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 900906.
    20. 20)
      • 27. Zhu, W., Shi, J., Abdelwahed, S.: ‘End-to-end system level modeling and simulation for medium-voltage DC electric ship power systems’, Int. J. Naval Archit. Ocean Eng., 2018, 10, (1), pp. 3747.
    21. 21)
      • 20. Dan, M.I., Tianqi, L., Shunliang, W.: ‘Variable-slope droop control strategy based on power flow distribution of multiterminal DC grid’, Electr. Power Constr., 2017, 38, (3), pp. 1926.
    22. 22)
      • 22. Li, C., Dragicevic, T., Plaza, M.G.: ‘Multiagent based distributed control for SOC balance of distributed energy storage in DC microgrids’. IECON Proc. Industrial Electronics Conf., Dallas, TX, USA, 2014, pp. 21802184.
    23. 23)
      • 11. Yi, W., Yang, H., Yuan, F., et al: ‘Adaptive virtual inertia control of DC distribution network based on variable droop coefficient’, Autom. Electr. Power Syst., 2017, 41, (8), pp. 116124.
    24. 24)
      • 6. Bellache, K., Camara, M.B., Dakyo, B.: ‘Hybrid electric boat based on variable speed diesel generator and lithium-battery - using frequency approach for energy management’. Joint Int. Conf. - ACEMP 2015, Side, Turkey, 2016, (1), pp. 744749.
    25. 25)
      • 29. Hou, N., Song, W., Wu, M.: ‘Direct power control scheme of full-bridge isolated DC/DC converters’, Dianli Xitong Zidonghua/Autom. Electr. Power Syst., 2016, 40, (17), pp. 204209.
    26. 26)
      • 24. Xiaonan, L., Josep, M.G., Kai, S., et al: ‘SoC-based droop method for distributed energy storage in DC microgrid applications’. IEEE Int. Symp. on Industrial Electronics, Hangzhou, China, 2012.
    27. 27)
      • 14. Shiying, H., Haiwei, Y.U., Qi, L.I., et al: ‘Adaptive control strategy of hybrid energy storage in microgrid islanded operation state’, Autom. Electr. Power Syst., 2017, 41, (17), pp. 1521.
    28. 28)
      • 5. Bellache, K, Camara, M.B., Dakyo, B.: ‘Transient power control for diesel-generator assistance in electric boat applications using supercapacitors and batteries’, IEEE J. Emerging Sel. Top. Power Electron., 2018, 6, (1), pp. 416428.
    29. 29)
      • 19. Smith, T., Jones, M.: ‘Adjustable inertial response from the converter with adaptive droop control in DC grids’, IEEE Trans. Smart Grid, 2019, 10, (3), pp. 31983209.
    30. 30)
      • 1. Hou, J., Sun, J., Hofmann, H.: ‘Mitigating power fluctuations in electrical ship propulsion using model predictive control with hybrid energy storage system’. Proc. of the American Control Conf., Portland, 2014, pp. 43664371.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1345
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1345
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address