access icon free Controlled islanding algorithm for AC/DC hybrid power systems utilising DC modulation

The controlled islanding problem is typically considered only for pure ac power systems, with the ultimate objective of either minimising power imbalance or power-flow among islands. However, as ac/dc hybrid power systems are becoming popular worldwide, current controlled islanding schemes should be redesigned to take into account the presence of high-voltage dc (HVDC) links, possibly connecting different islands. Accordingly, in this study, the authors solve the classic islanding problem combining HVDC power modulation with the conventional ac cutset search. The flexibility of the HVDC allows the authors' strategy to jointly capture the previously mentioned objectives, and provides even lower power imbalances than the minimum imbalance strategy, at a relatively small cost of increasing power-flow impact. Then, the optimisation problem is formulated as a mixed-integer linear programming problem, which can be conveniently solved with existing commercial solvers. Finally, they validate their proposed strategy in two case studies, corresponding to a modified IEEE-118 system and to the China Southern Power Grid system. In both cases, dynamic simulations show that their proposed approach outperforms classic algorithms where the presence of HVDC power modulation is not explicitly taken into account.

Inspec keywords: AC-DC power convertors; hybrid power systems; power transmission control; power generation control; integer programming; power distribution control; linear programming; electric current control; load flow control; distributed power generation; HVDC power convertors; power distribution faults; power grids; HVDC power transmission

Other keywords: ac cutset search; controlled islanding algorithm; current controlled islanding schemes; China Southern Power Grid system; modified IEEE-118 system; power-flow; islanding problem; high-voltage dc links; controlled islanding problem; pure ac power systems; DC modulation; mixed-integer linear programming problem; HVDC power modulation

Subjects: d.c. transmission; Current control; Distributed power generation; Distribution networks; Optimisation techniques; Control of electric power systems; Power system control; Power electronics, supply and supervisory circuits; AC-DC power convertors (rectifiers); Optimisation techniques

References

    1. 1)
      • 15. Dabbaghjamanesh, M., Wang, B., Kavousi-Fard, A., et al: ‘A novel two-stage multi-layer constrained spectral clustering strategy for intentional islanding of power grids’, IEEE Trans. Power Deliv., 2020, 35, (2), pp. 560570.
    2. 2)
      • 6. Alassi, A., Bañales, S., Ellabban, O., et al: ‘HVDC transmission: technology review, market trends and future outlook’, Renew Sustain. Energy Rev., 2019, 112, pp. 530554.
    3. 3)
      • 3. Fernández-Porras, P., Panteli, M., Quirós-Tortós, J.: ‘Intentional controlled islanding: when to island for power system blackout prevention’, IET. Gener. Transm. Distrib., 2018, 12, (14), pp. 35423549.
    4. 4)
      • 39. Tao, L., Weizeng, L., Xiang, H., et al: ‘Vsc hvdc control strategy based on burst mode operation for low voltage ride through’. 2016 IEEE 8th Int. Power Electronics and Motion Control Conf. (IPEMC-ECCE Asia), Hefei, China, 2016, pp. 36353639.
    5. 5)
      • 5. Sun, K., Hou, Y., Sun, W., et al: ‘Power system control under cascading failures: understanding, mitigation, and system restoration’ (John Wiley & Sons, Chinchester, UK, 2019).
    6. 6)
      • 38. Abedini, M., Sanaye-Pasand, M., Azizi, S.: ‘Adaptive load shedding scheme to preserve the power system stability following large disturbances’, IET. Gener. Transm. Distrib., 2014, 8, (12), pp. 21242133.
    7. 7)
      • 28. Su, F., Zhang, B., Yang, S., et al: ‘Study on real-time clustering method for power system transient stability assessment’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 15.
    8. 8)
      • 27. Wei, J., Kundur, D.: ‘A multi-flock approach to rapid dynamic generator coherency identification’. 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada,, 2013, pp. 15.
    9. 9)
      • 24. Li, C., Li, Y., He, P., et al: ‘Considering reactive power coordinated control of hybrid multi-infeed hvdc system research into emergency dc power support’, IET. Gener. Transm. Distrib., 2019, 13, (20), pp. 45414550.
    10. 10)
      • 20. Zhang, Z., Yuan, R., Xu, Y., et al: ‘Optimization of over-frequency generator-tripping scheme in sichuan power grid adaptable to multi-uhvdc transmission project’, Autom. Electr. Power Syst., 2016, 40, (2), pp. 141146.
    11. 11)
      • 14. Kyriacou, A., Demetriou, P., Panayiotou, C., et al: ‘Controlled islanding solution for large-scale power systems’, IEEE Trans. Power Syst., 2017, 33, (2), pp. 15911602.
    12. 12)
      • 33. Li, Y., Cai, J., Yang, H., et al: ‘A novel algorithm for initial cluster center selection’, IEEE Access, 2019, 7, pp. 7468374693.
    13. 13)
      • 22. Li, Y., Wu, S.: ‘Controlled islanding for a hybrid ac/dc grid with vsc-hvdc using semi-supervised spectral clustering’, IEEE Access, 2019, 7, pp. 1047810490.
    14. 14)
      • 2. Adibi, M., Kafka, R., Maram, S., et al: ‘On power system controlled separation’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18941902.
    15. 15)
      • 4. Ding, T., Sun, K., Huang, C., et al: ‘Mixed-integer linear programming-based splitting strategies for power system islanding operation considering network connectivity’, IEEE Syst. J., 2018, 12, (1), pp. 350359.
    16. 16)
      • 26. Lin, Z., Wen, F., Ding, Y., et al: ‘Wams-based coherency detection for situational awareness in power systems with renewables’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 54105426.
    17. 17)
      • 31. Jovcic, D., Pahalawaththa, N., Zavahir, M.: ‘Small signal analysis of hvdc-hvac interactions’, IEEE Trans. Power Deliv., 1999, 14, (2), pp. 525530.
    18. 18)
      • 13. Esmaeilian, A., Kezunovic, M.: ‘Prevention of power grid blackouts using intentional islanding scheme’, IEEE Trans. Ind. Appl., 2016, 53, (1), pp. 622629.
    19. 19)
      • 37. Singh, A.K., Fozdar, M.: ‘Event-driven frequency and voltage stability predictive assessment and unified load shedding’, IET. Gener. Transm. Distrib., 2019, 13, (19), pp. 44104420.
    20. 20)
      • 30. Zhou, J.Z., Ding, H., Fan, S., et al: ‘Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a vsc-hvdc converter’, IEEE Trans. Power Deliv., 2014, 29, (5), pp. 22872296.
    21. 21)
      • 12. Ding, L., Gonzalez-Longatt, F.M., Wall, P., et al: ‘Two-step spectral clustering controlled islanding algorithm’, IEEE Trans. Power Syst., 2012, 28, (1), pp. 7584.
    22. 22)
      • 18. Mahdi, M., Genc, I.: ‘Defensive islanding using self-organizing maps neural networks and hierarchical clustering’. 2015 IEEE Eindhoven PowerTech., Eindhoven, Netherlands, 2015, pp. 15.
    23. 23)
      • 34. Juarez, C., Messina, A., Castellanos, R., et al: ‘Characterization of multimachine system behavior using a hierarchical trajectory cluster analysis’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 972981.
    24. 24)
      • 7. Yang, S., Hojo, M., Zhang, B.: ‘A phase-plane-based dynamic coherency real-time identification scheme for controlled islanding’, IEEJ Trans. Electr. Electron. Eng., 2019, 14, (4), pp. 561568.
    25. 25)
      • 8. Senroy, N., Heydt, G.T.: ‘A conceptual framework for the controlled islanding of interconnected power systems’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 10051006.
    26. 26)
      • 1. Sun, K., Zheng, D.Z., Lu, Q.: ‘Splitting strategies for islanding operation of large-scale power systems using obdd-based methods’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 912923.
    27. 27)
      • 10. Liu, Z., Clark, A., Bushnell, L., et al: ‘Controlled islanding via weak submodularity’, IEEE Trans. Power Syst., 2019, 34, (3), pp. 18581868.
    28. 28)
      • 17. Kamwa, I., Pradhan, A.K., Joos, G., et al: ‘Fuzzy partitioning of a real power system for dynamic vulnerability assessment’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 13561365.
    29. 29)
      • 25. CSEPDI-SIEMENS. ‘Guizhou – guangdong ii line ±500 kv dc transmission project, pole control, c/p design specification’ CSEPDI-SIEMENS, 2007.
    30. 30)
      • 19. Ahangar, A.R.H., Gharehpetian, G.B., Baghaee, H.R.: ‘A review on intentional controlled islanding in smart power systems and generalized framework for ICI in microgrids’, Int. J. Electr. Power Energy Syst., 2020, 118, (1), p. 105709.
    31. 31)
      • 29. Barocio, E., Korba, P., Sattinger, W., et al: ‘Online coherency identification and stability condition for large interconnected power systems using an unsupervised data mining technique’, IET. Gener. Transm. Distrib., 2019, 13, (15), pp. 33233333.
    32. 32)
      • 36. Wang, A., Luo, Y., Tu, G., et al: ‘Vulnerability assessment scheme for power system transmission networks based on the fault chain theory’, IEEE Trans. Power Syst., 2010, 26, (1), pp. 442450.
    33. 33)
      • 16. Xu, G., Vittal, V.: ‘Slow coherency based cutset determination algorithm for large power systems’, IEEE Trans. Power Syst., 2009, 25, (2), pp. 877884.
    34. 34)
      • 9. Wang, C., Zhang, B., Hao, Z., et al: ‘A novel real-time searching method for power system splitting boundary’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 19021909.
    35. 35)
      • 21. Shah, R., Sanchez, J.C., Preece, R., et al: ‘Stability and control of mixed ac–dc systems with vsc-hvdc: a review’, IET. Gener. Transm. Distrib., 2018, 12, (10), pp. 22072219.
    36. 36)
      • 23. Zhiguo, H., Zijia, H.: ‘Study on the optimization of reactive power control strategy of rectifier station in hvdc system’ (State Grid Ningxia Electric Power Company, Yinchuan, Ningxia, China, 2018).
    37. 37)
      • 35. Zhang, H., Zhai, C., Xiao, G., et al: ‘Identifying critical risks of cascading failures in power systems’, IET. Gener. Transm. Distrib., 2019, 13, (12), pp. 24382445.
    38. 38)
      • 40. Demetriou, P., Asprou, M., Quiros-Tortos, J., et al: ‘Dynamic ieee test systems for transient analysis’, IEEE Syst. J., 2015, 11, (4), pp. 21082117.
    39. 39)
      • 11. Teymouri, F., Amraee, T., Saberi, H., et al: ‘Towards controlled islanding for enhancing power grid resilience considering frequency stability constraints’, IEEE Trans. Smart Grid, 2019, 10, (2), pp. 17351746.
    40. 40)
      • 32. Cotilla-Sanchez, E., Hines, P.D., Barrows, C., et al: ‘Comparing the topological and electrical structure of the north american electric power infrastructure’, IEEE Syst. J., 2012, 6, (4), pp. 616626.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1335
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1335
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading