access icon free Optimal dispatching method based on actual ramp rates of power generation units for minimising load demand response time

This study proposes a method to determine optimal load demand changes of power generation units, in order to complete a total load demand change for power grids in the minimum response time. The main feature is to exploit the information of actual ramp rates, which are the maximum changing speeds of generated powers in practice from power generation units. The proposed method is composed of two steps. First, actual ramp rates are estimated from historical data based on the piece-wise linear representations of generated powers. Second, optimal values of load demand changes are determined based on the solutions to an optimisation problem minimising the response time. A main challenge is on the uncertainties of estimated actual ramp rates and their effects on the response time. This challenge is resolved by exploiting Bayesian estimators to yield posterior probability distributions of the estimated actual ramp rates, from which the optimal response time and its confidence interval are obtained. Numerical examples are provided to support the proposed method and compare with existing methods.

Inspec keywords: probability; Bayes methods; optimisation; demand side management; power grids; load management; power generation economics; power generation dispatch; numerical analysis

Other keywords: minimum response time; total load demand change; piece-wise linear representations; historical data; optimal load demand changes; actual ramp rates; Bayesian estimators; optimal dispatching method; numerical analysis; yield posterior probability distributions; optimisation problem; power generation units; power grids

Subjects: Optimisation techniques; Other topics in statistics; Numerical analysis; Power system management, operation and economics

References

    1. 1)
      • 30. Karnavas, Y.L., Papadopoulos, D.P.: ‘AGC for autonomous power system using combined intelligent techniques’, Electr. Power Syst. Res., 2002, 62, pp. 225239.
    2. 2)
      • 4. Bevrani, H., Hiyama, T.: ‘Intelligent automatic generation control’ (Taylor & Francis, New York, 2011).
    3. 3)
      • 9. Amjady, N.: ‘Short-term hourly load forecasting using time-series modeling with peak load estimation capability’, IEEE Trans. Power Syst., 2001, 16, pp. 498505.
    4. 4)
      • 29. Chaturvedi, D.K., Satsangi, P.S., Kalra, P.K.: ‘Load frequency control: a generalised neural network approach’, Int. J. Electr. Power Energy Syst., 1999, 21, pp. 405415.
    5. 5)
      • 31. Zhang, X., Xu, Z., Yu, T., et al: ‘Optimal mileage based AGC dispatch of a genCo’, IEEE Trans. Power Syst., 2020, 35, pp. 25162526.
    6. 6)
      • 5. Keyhani, A., Chatterjee, A.: ‘Automatic generation control structure for smart power grids’, IEEE Trans. Smart Grid, 2012, 3, pp. 13101316.
    7. 7)
      • 8. Wei, Q., Guo, M., Han, X., et al: ‘New approach of automatic generation control based on absolute rotor angle droop control’, IET Gener. Transm. Distrib., 2018, 12, pp. 35613568.
    8. 8)
      • 32. Zhang, X., Yu, T., Yang, B., et al: ‘Virtual generation tribe based robust collaborative consensus algorithm for dynamic generation command dispatch optimization of smart grid’, Energy, 2016, 101, pp. 3451.
    9. 9)
      • 25. Wang, J., Pang, X., Gao, S., et al: ‘Assessment of automatic generation control performance of power generation units based on amplitude changes’, Int. J. Elect. Power & Energy Sys., 2019, 108, pp. 1930.
    10. 10)
      • 2. Bevrani, H., Ghosh, A., Ledwich, G.: ‘Renewable energy sources and frequency regulation: survey and new perspectives’, IET Renew. Power Gener., 2010, 4, pp. 438457.
    11. 11)
      • 12. Wood, A.J., Wollenberg, B.F.: ‘Power generatipon, operation and control’ (Wiley, New York, 1996).
    12. 12)
      • 24. Wang, Z., Wu, W., Zhang, B: ‘A fully distributed power dispatch method for fast frequency recovery and minimal generation cost in autonomous microgrids’, IEEE Trans. Smart Grid, 2015, 7, pp. 1931.
    13. 13)
      • 17. Liu, Z., Yi, Y., Yang, J., et al: ‘Optimal planning and operation of dispatchable active power resources for islanded multi-microgrids under decentralised collaborative dispatch framework’, IET Gener. Transm. Distrib., 2020, 14, pp. 408422.
    14. 14)
      • 13. Bergen, A.R., Vittal, V.: ‘Power systems analysis’ (Prentice-Hall, Englewood Cliffs, 2000).
    15. 15)
      • 15. Cheng, C., Li, S., Li, G.: ‘A hybrid method of incorporating extended priority list into equal incremental principle for energy-saving generation dispatch of thermal power systems’, Energy, 2014, 64, pp. 688696.
    16. 16)
      • 3. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    17. 17)
      • 18. Ongsakul, W., Chayakulkheeree, K.: ‘Coordinated fuzzy constrained optimal power dispatch for bilateral contract, balancing electricity, and ancillary services markets’, IEEE Trans. Power Syst., 2006, 21, pp. 593604.
    18. 18)
      • 10. Yang, Z.: ‘Modelling and forecasting of electric daily peak load movement based on the elliptic-orbit model with weekly periodic extension: a case study’, IET Gener. Transm. Distrib, 2014, 8, pp. 20462054.
    19. 19)
      • 16. Singh, H., Papalexopoulos, A.: ‘Competitive procurement of ancillary services by an independent system operator’, IEEE Trans. Power Syst., 1999, 14, pp. 498504.
    20. 20)
      • 28. Wang, J., Yu, Y., Chen, K.: ‘Determining the number of segments for piece-wise linear representation of discrete time signals’, Comput. Chem. Eng., 2019, 120, pp. 4653.
    21. 21)
      • 20. Xu, J., Gu, Y., Chen, D., et al: ‘Data mining based plant-level load dispatching strategy for the coal-fired power plant coal-saving: a case study’, Appl. Therm. Eng., 2017, 119, pp. 553559.
    22. 22)
      • 19. Rong, A., Hakonen, H., Lahdelma, R.: ‘A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems’, Energy Conv. Manag., 2009, 50, pp. 11081115.
    23. 23)
      • 7. Saha, D., Saikia, L.C.: ‘Automatic generation control of a multi-area CCGT-thermal power system using stochastic search optimised integral minus proportional derivative controller under restructured environment’, IET Gener. Transm. Distrib., 2017, 11, pp. 38013813.
    24. 24)
      • 6. Hasanien, H.M.: ‘Whale optimisation algorithm for automatic generation control of interconnected modern power systems including renewable energy sources’, IET Gener. Transm. Distrib., 2018, 12, pp. 607614.
    25. 25)
      • 14. Senjyu, T., Shimabukuro, K., Uezato, K., et al: ‘A fast technique for unit commitment problem by extended priority list’, IEEE Trans. Power Syst., 2003, 18, pp. 882888.
    26. 26)
      • 27. Keogh, E., Chu, S., Hart, D., et al: ‘Segmenting time series: a survey and novel approach’, Data Mining Time Series Databases, 2004, 57, pp. 122.
    27. 27)
      • 26. Zeng, M., Liu, X., Peng, L.: ‘The ancillary services in china: an overview and key issues’, Renew. Sust. Energ. Rev., 2014, 36, pp. 8390.
    28. 28)
      • 23. Yu, T., Wang, Y., Ye, W., et al: ‘Stochastic optimal generation command dispatch based on improved hierarchical reinforcement learning approach’, IET Gener. Transm. Distrib., 2011, 5, pp. 789797.
    29. 29)
      • 1. Kumar, S., Saket, R.K., Dheer, D.K., et al: ‘Reliability enhancement of electrical power system including impacts of renewable energy sources: a comprehensive review’, IET Gener. Transm. Distrib., 2020, 14, (10), pp. 17991815.
    30. 30)
      • 21. Zeynelgil, H.L., Demiroren, A., Sengor, N.S.: ‘The application of ANN technique to automatic generation control for multi-area power system’, Int. J. Electr. Power Energy Syst., 2002, 24, pp. 345354.
    31. 31)
      • 22. Karimizadeh, K., Soleymani, S., Faghihi, F.: ‘Optimal placement of DG units for the enhancement of MG networks performance using coalition game theory’, IET Gener. Transm. Distrib., 2020, 14, pp. 853862.
    32. 32)
      • 11. Kodaira, D., Jung, W., Han, S.: ‘Optimal energy storage system operation for peak reduction in a distribution network using a prediction interval’, IEEE Trans. Smart Grid, 2020, 11, pp. 22082217.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1329
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1329
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading