access icon free Stabilising transient disturbances with utility-scale inverter-based resources

This study presents a trajectory tracking control strategy that modulates the active power injected by geographically distributed inverter-based resources to support transient stability. Each resource is independently controlled, and its response drives the local bus voltage angle towards a trajectory that tracks the angle of the centre-of-inertia. The centre-of-inertia angle is estimated in real time from wide-area measurements. The main objectives are to stabilise transient disturbances and increase the amount of power that can be safely transferred over key transmission paths without loss of synchronism. Here the authors envision the actuators as utility-scale energy storage systems; however, equivalent examples could be developed for partially-curtailed photovoltaic generation and/or Type 4 wind turbine generators. The strategy stems from a time-varying linearisation of the equations of motion for a synchronous machine. The control action produces synchronising torque in a special reference frame that accounts for the motion of the centre-of-inertia. This drives the system states toward the desired trajectory and promotes rotor angle stability. For testing, a reduced-order dynamic model of the North American Western Interconnection is employed. The results show that this approach improves system reliability and can increase capacity utilisation on stability-limited transmission corridors.

Inspec keywords: rotors; power system transient stability; power grids; invertors; power generation reliability; wind turbines; photovoltaic power systems; turbogenerators; synchronous machines; power generation control; power generation faults

Other keywords: rotor angle stability; type 4 wind turbine generators; active power; synchronous machine; centre-of-inertia angle; wide-area measurements; North American western interconnection; transient stability; geographically distributed inverter-based resources; transient disturbances; utility-scale energy storage systems; local bus voltage angle; utility-scale inverter-based resources; system reliability; trajectory tracking control strategy

Subjects: Power system control; Solar power stations and photovoltaic power systems; Control of electric power systems; DC-AC power convertors (invertors); Wind power plants; Power electronics, supply and supervisory circuits; Synchronous machines; Reliability

References

    1. 1)
      • 9. Bergen, A.R., Hill, D.J.: ‘A structure preserving model for power system stability analysis’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (1), pp. 2535.
    2. 2)
      • 21. Romay, O., Martinez-Parrales, R., Fuerte-Esquivel, C.R.: ‘Transient stability assessment considering hard limits on dynamic states’, IEEE Trans. Power Syst., 2021, 36, (1), pp. 11.
    3. 3)
      • 17. Stanton, S.E., Slivinsky, C., Martin, K., et al: ‘Application of phasor measurements and partial energy analysis in stabilizing large disturbances’, IEEE Trans. Power Syst., 1995, 10, (1), pp. 297306.
    4. 4)
      • 26. Yao, Z.: ‘A control-oriented energy function for generation shedding determination for transient stability control’, IEEE Trans. Power Syst., 2019, 34, (1), pp. 413421.
    5. 5)
      • 1. Anderson, P.M., LeReverend, B.K.: ‘Industry experience with special protection schemes’, IEEE Trans. Power Syst., 1996, 11, (3), pp. 11661179.
    6. 6)
      • 22. Wang, H., Wang, Q., Chen, Q.: ‘Transient stability assessment model with improved cost-sensitive method based on the fault severity’, IET Gener Transm. Distrib., 2020, 14, (20), pp. 46054611.
    7. 7)
      • 27. Guo, Y., Hill, D.J., Wang, Y.: ‘Global transient stability and voltage regulation for power systems’, IEEE Trans. Power Syst., 2001, 16, (4), pp. 678688.
    8. 8)
      • 7. Magnusson, P.C.: ‘The transient-energy method of calculating stability’, Trans. AIEE, 1947, 66, (1), pp. 747755.
    9. 9)
      • 45. Wilches-Bernal, F., Chow, J.H., Sanchez-Gasca, J.J.: ‘A fundamental study of applying wind turbines for power system frequency control’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14961505.
    10. 10)
      • 18. Vu, T.L., Turitsyn, K.: ‘Lyapunov functions family approach to transient stability assessment’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 12691277.
    11. 11)
      • 15. Maria, G.A., Tang, C., Kim, J.: ‘Hybrid transient stability analysis’, IEEE Trans. Power Syst., 1990, 5, (2), pp. 384393.
    12. 12)
      • 29. Ghandhari, M., Andersson, G., Hiskens, I.A.: ‘Control Lyapunov functions for controllable series devices’, IEEE Trans. Power Syst., 2001, 16, (4), pp. 689694.
    13. 13)
      • 19. Ju, P., Li, H., Gan, C., et al: ‘Analytical assessment for transient stability under stochastic continuous disturbances’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 20042014.
    14. 14)
      • 11. Hiskens, I.A., Hill, D.J.: ‘Energy functions, transient stability and voltage behaviour in power systems with nonlinear loads’, IEEE Trans. Power Syst., 1989, 4, (4), pp. 15251533.
    15. 15)
      • 31. Kawabe, K., Yokoyama, A.: ‘Improvement of angle and voltage stability by control of batteries using wide-area measurement system in power systems’. IEEE PES Innovative Smart Grid Tech., Europe, 2012, pp. 17.
    16. 16)
      • 2. Zaborszky, J., Prasad, K., Whang, K.-W.: ‘Stabilizing control in emergencies – part 2: control by local feedback’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (5), pp. 23812389.
    17. 17)
      • 10. Vittal, V.: ‘Power system transient stability using the critical energy of individual machines’. [Retrospective Theses and Dissertations]. Iowa State University, 1982.
    18. 18)
      • 38. NASPI Engineering Analysis Task Team: ‘Phase angle calculations: Considerations and use cases’, 2016. Accessed: 1 October 2020. Technical paper. Available from: https://www.naspi.org/sites/.
    19. 19)
      • 47. Dudgeon, G.J.W., Leithead, W.E., Dyśko, A., et al: ‘The effective role of AVR and PSS in power systems: frequency response analysis’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 19861994.
    20. 20)
      • 44. Grondin, R., Kamwa, I., Soulieres, L., et al: ‘An approach to PSS design for transient stability improvement through supplementary damping of the common low-frequency’, IEEE Trans. Power Syst., 1993, 8, (3), pp. 954963.
    21. 21)
      • 34. Elliott, R.: ‘Trajectory tracking wide-area control for power systems’ [Doctoral dissertation]. Electrical and Computer Engineering, University of Washington, 2020.
    22. 22)
      • 5. Varaiya, P., Wu, F.F., Chen, R.-L.: ‘Direct methods for transient stability analysis of power systems: recent results’, Proc. IEEE, 1985, 73, (12), pp. 17031715.
    23. 23)
      • 25. Abdi-Khorsand, M., Vittal, V.: ‘Identification of critical protection functions for transient stability studies’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 29402948.
    24. 24)
      • 6. Chu, H.-D., Chiang, C.-C., Cauley, G.: ‘Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective’, Proc. IEEE, 1995, 83, (11), pp. 14971529.
    25. 25)
      • 28. Li, T., Ledwich, G., Mishra, Y., et al: ‘Wave aspect of power system transient stability–part II: control implications’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 25012508.
    26. 26)
      • 16. Mansour, Y., Vaahedi, E., Chang, A.Y., et al: ‘BC hydro's on-line transient stability assessment (TSA) model development, analysis and post-processing’, IEEE Trans. Power Syst., 1995, 10, (1), pp. 241253.
    27. 27)
      • 42. Pierre, B., Elliott, R., Schoenwald, D., et al: ‘Supervisory system for a wide area damping controller using PDCI modulation and real-time PMU feedback’. Proc. IEEE Power Energy Society General Meeting, Boston, MA, USA, 2016, pp. 15.
    28. 28)
      • 12. Pai, M.A.: ‘Energy function analysis for power system stability’ (Power Electronics and Power Systems. Springer, US, 1989).
    29. 29)
      • 8. Athay, T., Podmore, R., Virmani, S.: ‘A practical method for the direct analysis of transient stability’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (2), pp. 573584.
    30. 30)
      • 24. Bhui, P., Senroy, N.: ‘Real-time prediction and control of transient stability using transient energy function’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 923934.
    31. 31)
      • 3. Trudnowski, D., Kosterev, D., Wold, J.: ‘Open-loop PDCI probing tests for the western north american power system’. Proc. IEEE Power Energy Society General Meeting, National Harbor, MD, USA, 2014, pp. 15.
    32. 32)
      • 39. Elliott, R.T., Ellis, A., Pourbeik, P., et al: ‘Generic photovoltaic system models for WECC–A status report’. Proc. IEEE Power Energy Society General Meeting, Denver, CO, USA, 2015, pp. 15.
    33. 33)
      • 46. Stapleton, C.A.: ‘Root-locus study of synchronous-machine regulation’, Proc. Inst. Electr. Eng., 1964, 111, (4), pp. 761768.
    34. 34)
      • 32. Yousefian, R., Bhattarai, R., Kamalasadan, S.: ‘Transient stability enhancement of power grid with integrated wide area control of wind farms and synchronous generators’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 48184831.
    35. 35)
      • 41. Dolezilek, D., Hussey, L.: ‘Requirements or recommendations? sorting out NERC CIP, NIST, and DOE cybersecurity’. Proc. Annual Conf. Protective Relay Engineering, College Station, TX, USA, 2011, pp. 328333.
    36. 36)
      • 13. Michel, A., Fouad, A., Vittal, V.: ‘Power system transient stability using individual machine energy functions’, IEEE Trans. Circuits Syst., 1983, 30, (5), pp. 266276.
    37. 37)
      • 43. Chow, J.H., Cheung, K.W.: ‘A toolbox for power system dynamics and control engineering education and research’, IEEE Trans. Power Syst., 1992, 7, (4), pp. 15591564.
    38. 38)
      • 40. Pierre, B.J., Wilches-Bernal, F., Schoenwald, D.A., et al: ‘Design of the pacific DC intertie wide area damping controller’, IEEE Trans. Power Syst., 2019, 34, (5), pp. 35943604.
    39. 39)
      • 48. Pourbeik, P., Gibbard, M.J.: ‘Damping and synchronizing torques induced on generators by FACTS stabilizers in multimachine power systems’, IEEE Trans. Power Syst., 1996, 11, (4), pp. 19201925.
    40. 40)
      • 33. Elliott, R.T., Arabshahi, P., Kirschen, D.S.: ‘A generalized PSS architecture for balancing transient and small-signal response’, IEEE Trans. Power Syst., 2020, 35, (2), pp. 14461456.
    41. 41)
      • 37. Phadke, A.G., Thorp, J.S., Adamiak, M.G.: ‘A new measurement technique for tracking voltage phasors, local system frequency, and rate of change of frequency’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (5), pp. 10251038.
    42. 42)
      • 30. Haque, M.H.: ‘Evaluation of first swing stability of a large power system with various FACTS devices’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 11441151.
    43. 43)
      • 20. Iravani, A., de León, F.: ‘Real-time transient stability assessment using dynamic equivalents and nonlinear observers’, IEEE Trans. Power Syst., 2020, 35, (4), pp. 29812992.
    44. 44)
      • 36. Távora, C.J., Smith, M.O.J.: ‘Characterization of equilibrium and stability in power systems’, IEEE Trans. Power Appar. Syst., 1972, PAS-91, (3), pp. 11271130.
    45. 45)
      • 14. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’ (EPRI Power Systems Engineering. McGraw-Hill, United States of America, 1994).
    46. 46)
      • 35. Tsakalis, K.S., Ioannou, P.A.: ‘Linear time-varying systems: control and adaptation’. electrical engineering: controls' (Prentice-Hall, United States of America, 1993).
    47. 47)
      • 23. Zweigle, G.C., Venkatasubramanian, V.: ‘Wide-area optimal control of electric power systems with application to transient stability for higher order contingencies’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 23132320.
    48. 48)
      • 4. Xue, Y., Van Custem, T., Ribbens-Pavella, M.: ‘Extended equal area criterion justifications, generalizations, applications’, IEEE Trans. Power Syst., 1989, 4, (1), pp. 4452.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1319
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1319
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading