access icon free Residual life prediction of marine EPR cable under discontinuous operation

It is known that marine cable is responsible for the transmission of electric energy and electrical signals of the ship. In order to predict the residual life of cable under discontinuous operation, a non-destructive online life prediction model is established based on retention rate of hardness (RRH). This study takes the marine ethylene propylene rubber (EPR) cable as the research object. Using time temperature superposition principle, the optimal time temperature shift factor is calculated using particle swarm optimisation and steepest descent method. After that the main curve was fitted exponentially to acquire the relationship between RRH and ageing time. Compared with the existing model, the results indicate that the proposed model has higher prediction accuracy. On this basis, the residual life prediction model based on RRH of marine EPR under discontinuous operation is presented by adding time parameters. The effectiveness of the method is verified by simulation. Thus, it provides theoretical guidance for solving the problem of marine cable replacement time.

Inspec keywords: ethylene-propylene rubber; power cable insulation; ageing; life testing; fatigue; remaining life assessment; particle swarm optimisation

Other keywords: discontinuous operation; ageing time; time temperature superposition principle; steepest descent method; retention rate; optimal time temperature shift factor; residual life prediction model; time parameters; RRH; electric energy; electrical signals; marine cable replacement time; marine EPR cable; nondestructive online life prediction model; marine ethylene propylene rubber cable; particle swarm optimisation

Subjects: Mechanical components; Organic insulation; Optimisation techniques; Maintenance and reliability

References

    1. 1)
      • 23. Kittisopaporn, A., Chansangiam, P.: ‘The steepest descent of gradient-based iterative method for solving rectangular linear systems with an application to Poisson's equation’, Adv. Differ. Equ., 2020, 2020, (1), p. 259.
    2. 2)
    3. 3)
      • 1. Meng, X.K.: ‘Study on nondestructive lifetime prediction method of EPR insulation material in shipboard power cables’. PhD thesis, Dalian University of Technology, 2017(in Chinese).
    4. 4)
      • 9. Meng, X.K., Wang, Z.Q., Li, G.F.: ‘Nondestructive condition assessment techniques for the ethylene-propylene rubber cable’, Res. Nondestruct. Eval., 2017, 28, (1), pp. 4559.
    5. 5)
      • 11. Dinmohammadi, F., Flynn, D., Bailey, C., et al: ‘Predicting damage and life expectancy of subsea power cables in offshore renewable energy applications’, IEEE Access, 2019, 7, pp. 5465854669.
    6. 6)
      • 19. Alwis, K., Burgoyne, C.: ‘Time-temperature superposition to determine the stress-rupture of aramid fibres’, Appl. Compos. Mater., 2006, 13, (4), pp. 249264.
    7. 7)
      • 3. Zuo, Z., Dissado, L.A., Yao, C., et al: ‘Modeling for life estimation of HVDC cable insulation based on small-size specimens’, IEEE Electr. Insul. Mag., 2020, 36, (1), pp. 1929.
    8. 8)
      • 16. Meng, X.K., Wang, Z.Q., Li, G.F.: ‘Rapid assessment of marine cable remaining life based on retention rate of hardness’, Trans. China Electrotech. Soc., 2016, 31, (15), pp. 197203(in Chinese).
    9. 9)
      • 10. Koga, Y., Arao, Y., Kubouchi, M.: ‘Application of small punch test to lifetime prediction of plasticized polyvinyl chloride wire’, Polym. Degrad. Stab., 2020, 171, p. 109013.
    10. 10)
      • 6. Wang, Z.Q., Zhou, C.L., Li, W.W., et al: ‘Residual life assessment of butyl rubber insulated cable in shipboard’, Proc. CSEE, 2012, 32, (34), pp. 189195(in Chinese).
    11. 11)
      • 5. Wang, H.X.: ‘Study of the rule of ship cable insulation aging and rapid detection methods’. PhD thesis, Dalian Maritime University, 2014(in Chinese).
    12. 12)
      • 26. Xie, Z.Y., Ji, Y.L., Liu, H.J., et al: ‘A rapid evaluation method for residual life of marine PVC cable’, J. Harbin Eng. Univ., 2019, 40, (7), pp. 12841289(in Chinese).
    13. 13)
      • 20. Zbiciak, A., Michalczyk, R., Brzeziski, K.: ‘Time-temperature superposition for viscoelastic materials with application to asphalt-aggregate mixes’, Int. J. Environ. Sci. Technol., 2019, 16, (9), pp. 50595064.
    14. 14)
      • 27. Kim, J., Yoon, J.S., Choi, S.W.: ‘Lifetime assessment method using multiple-stress acceleration aging for flexible cable of portable electric machines’, J. Electr. Eng. Technol., 2016, 11, (5), pp. 13771382.
    15. 15)
      • 18. Liao, R.J., Liu, J.F., Lv, Y.D., et al: ‘Frequency domain dielectric characteristic parameters for quantitative assessment of moisture content of oil paper insulation in power transformers’, Trans. China Electrotech. Soc., 2015, 30, (6), pp. 247254(in Chinese).
    16. 16)
      • 24. Daskalakis, C., Panageas, I.: ‘The limit points of (optimistic) gradient descent in min-max optimization’. Conf. on Neural Information Processing Systems, Montreal Canada, December 2018.
    17. 17)
      • 8. Lakhdar, B., Larbi, B., Djillali, M., et al: ‘Lifetime estimation and diagnosis of XLPE used in HV insulation cables under thermal ageing: arithmetic sequences optimised by genetic algorithms approach’, IET Gener. Transm. Distrib., 2017, 11, (10), pp. 24292437.
    18. 18)
      • 25. Paulo, E.H., Folli, G.S., Nascimento, M.H.C., et al: ‘Particle swarm optimization and ordered predictors selection applied in NMR to predict crude oil properties’, Fuel, 2020, 279, p. 118462.
    19. 19)
      • 21. Liu, L., Wang, Q.R., Wang, J.Z., et al: ‘A rolling grey model optimized by particle swarm optimization in economic prediction’, Comput. Intell., 2016, 32, (3), pp. 391419.
    20. 20)
      • 17. Meng, X.K., Wang, Z.G., Li, G.F.: ‘Life assessment of marine ethylene propylene rubber power cables based on hardness retention rate’, Arch. Electr. Eng., 2017, 66, (3), pp. 475484.
    21. 21)
      • 7. Pavel, H., Radek, P.: ‘Estimation of the service lifetime of cable sheath materials designed for working in harsh operating environment’. Int. Scientific Conf. on Electric Power Engineering, Kouty nad Desnou, Czech Republic, May 2015, pp. 307310.
    22. 22)
      • 15. Xie, Z.Y.: ‘Research of the rapid test method for insulation aging of marine PVC cable based on hardness’. M.D. thesis, Dalian Maritime University, 2019(in Chinese).
    23. 23)
      • 2. Lei, Z.P., Song, J.C., Tian, M.Q., et al: ‘Influence of cavities on the dielectric properties of ethylene propylene rubber insulation’. Int. Symp. on Electrical Insulating Materials, Niigata Japan, June 2014, pp. 437440.
    24. 24)
      • 4. Pirc, M., Avsec, J., Korosin, N.C., et al: ‘Cable aging monitoring with differential scanning calorimetry (DSC) in nuclear power plants’, Trans. Famena, 2018, 42, pp. 8798.
    25. 25)
      • 22. Ashitha, P.N., Ganga, S.: ‘Remaining life estimation of a overhead composite insulator using particle swarm optimization technique’. Int. Conf. on Power and Embedded Drive Control, Chennai India, March 2017, pp. 137141.
    26. 26)
      • 14. Wang, H.X., Ji, Y.L., Li, G., et al: ‘Study on rapid detection method of marine cable residue lifetime’, J. Harbin Eng. Univ., 2014, 35, (9), pp. 10761081(in Chinese).
    27. 27)
      • 13. Wang, H.X., Ji, Y.L., Li, G., et al: ‘Hardness analysis of insulating layer of styrene butadiene rubber cable for ships in insulation ageing process’, J. Shanghai Maritime Univ., 2013, 34, (4), pp. 103108(in Chinese).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1294
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1294
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading