Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free PMU-based decentralised mixed algebraic and dynamic state observation in multi-machine power systems

The authors propose a novel decentralised mixed algebraic and dynamic state observation method for multi-machine power systems with unknown inputs and equipped with phasor measurement units (PMUs). More specifically, they prove that for the third-order flux-decay model of a synchronous generator, the local PMU measurements provide enough information to reconstruct algebraically the load angle and quadrature-axis internal voltage. Due to the algebraic structure, a high numerical efficiency is achieved, which makes the method applicable to large-scale power systems. Also, they prove that the relative shaft speed can be globally estimated combining a classical immersion and invariance observer with – the recently introduced – dynamic regressor extension and mixing parameter estimator. This adaptive observer ensures global convergence under weak excitation assumptions that are verified in applications. The proposed method neither requires the measurement of exogenous input signals such as the field voltage and the mechanical torque nor the knowledge of mechanical subsystem parameters.

References

    1. 1)
      • 1. Zhao, J., Gomez-Exposito, A., Netto, M., et al: ‘Power system dynamic state estimation: motivations, definitions, methodologies and future work’, IEEE Trans. Power Syst., 2019, 34, (4), pp. 31883198.
    2. 2)
      • 8. Paul, A., Joos, G., Kamwa, I.: ‘Dynamic state estimation of full power plant model from terminal phasor measurements’. 2018 IEEE/PES Transmission and Distribution Conf. and Exposition (T&D), Denver, CO, 2018, pp. 15.
    3. 3)
      • 30. Canizares, C., Fernandes, T., Geraldi, Jr.E., et al: ‘Benchmark systems for small signal stability analysis and control’. IEEE PES Task Force, Technical Report, 2015.
    4. 4)
      • 4. Dehghani, M., Goel, L., Li, W.: ‘PMU based observability reliability evaluation in electric power systems’, Electr. Power Syst. Res., 2014, 116, pp. 347354.
    5. 5)
      • 23. Machowski, J., Bialek, J.W., Bumby, J.: ‘Power system dynamics: stability and control’ (John Wiley & Sons, Chichester (UK), 2008, 2nd edn.).
    6. 6)
      • 26. Aranovskiy, S., Bobtsov, A., Ortega, R., et al: ‘Performance enhancement of parameter estimators via dynamic regressor extension and mixing’, IEEE Trans. Autom. Control, 2017, 62, pp. 35463550.
    7. 7)
      • 36. Ortega, R., Aranovskiy, S., Pyrkin, A., et al: ‘New results on parameter estimation via dynamic regressor extension and mixing: continuous and discrete-time cases’, IEEE Trans. Autom. Control, 2020, 10.1109/TAC.2020.
    8. 8)
      • 38. Vidyasagar, M.: ‘Decomposition techniques for large-scale systems with non-additive interactions: stability and stabilizability’, IEEE Trans. Autom. Control, 1980, 25, (4), pp. 773779.
    9. 9)
      • 39. Brown, M., Biswal, M., Brahma, S., et al: ‘Characterizing and quantifying noise in PMU data’. IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 15.
    10. 10)
      • 19. Qi, J., Taha, A.F., Wang, J.: ‘Comparing Kalman filters and observers for power system dynamic state estimation with model uncertainty and malicious cyber attacks’, IEEE Access, 2018, 6, pp. 7715577168.
    11. 11)
      • 16. Bernard, P.: ‘Observer design for nonlinear systems’ (Springer, Cham (Switzerland), 2019).
    12. 12)
      • 22. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York (USA), 1994).
    13. 13)
      • 24. Sauer, P., Pai, M.A., Chow, J.: ‘Power systems dynamics and stability’ (Wiley, Chichester (UK), 2017).
    14. 14)
      • 32. IEEE Std 1110-2019 (Revision of IEEE Std 1110-2002): ‘IEEE Guide for Synchronous Generator Modeling Practices and Parameter Verification with Applications in Power System Stability Analyses’, 2020, pp. 192.
    15. 15)
      • 12. Emami, K., Fernando, T., Iu, H.H., et al: ‘Particle filter approach to dynamic state estimation of generators in power systems’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 26652675.
    16. 16)
      • 7. Anderson, J.E., Chakrabortty, A.: ‘PMU placement for dynamic equivalencing of power systems under flow observability constraints’, Electr. Power Syst. Res., 2014, 106, pp. 5161.
    17. 17)
      • 17. Nugroho, S.A., Taha, A.F., Qi, J.: ‘Robust dynamic state estimation of synchronous machines with asymptotic state estimation error performance guarantees’, IEEE Trans. Power Syst., 2020, 35, (3), pp. 19231935.
    18. 18)
      • 21. Marchi, P., Messina, F., Vega, L.R., et al: ‘Online tracking of sub-transient generator model variables using dynamic phasor measurements’, Electr. Power Syst. Res., 2020, 180, 106057.
    19. 19)
      • 35. Uecker, L., Wedeward, K.: ‘Differential flatness of the flux-decay generator model’. 10th System of Systems Engineering Conf., San Antonio, TX, 2015, pp. 146151.
    20. 20)
      • 34. Ghahremani, E., Kamwa, I.: ‘Local and wide-area PMU-based decentralized dynamic state estimation in multi-machine power systems’, IEEE Trans. Power Syst., 2015, 31, (1), pp. 547562.
    21. 21)
      • 37. Sastry, S., Bodson, M.: ‘Adaptive control: stability, convergence and robustness’ (Prentice-Hall, New Jersey, 1989).
    22. 22)
      • 40. Zhou, N., Meng, D., Huang, Z., et al: ‘Dynamic state estimation of a synchronous machine using PMU data: a comparative study’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 450460.
    23. 23)
      • 6. Matavalam, A.R.R., Singhal, A., Ajjarapu, V.: ‘Monitoring long term voltage instability due to distribution and transmission interaction using unbalanced μPMU and PMU measurements’, IEEE Trans. Smart Grid, 2020, 11, (1), pp. 873883.
    24. 24)
      • 9. Wang, S., Gao, W., Meliopoulos, A.P.: ‘An alternative method for power system dynamic state estimation based on unscented transform’, IEEE Trans. Power Syst., 2011, 27, (2), pp. 942950.
    25. 25)
      • 31. Wang, S., Zhao, J., Huang, Z., et al: ‘Assessing Gaussian assumption of PMU measurement error using field data’, IEEE Trans. Power Deliv., 2018, 33, (6), pp. 32333236.
    26. 26)
      • 27. Bobtsov, A.A., Pyrkin, A.A., Ortega, R., et al: ‘A robust globally convergent position observer for the permanent magnet synchronous motor’, Automatica, 2015, 64, pp. 4754.
    27. 27)
      • 41. Armstrong, J.S.: ‘Long-range forecasting: from crystal ball to computer’ (John Wiley & Sons, New York (USA), 1985).
    28. 28)
      • 5. Milano, F., Doerfler, F., Hug, G., et al: ‘Foundations and challenges of low-inertia systems’. 2018 Power Systems Computation Conf. (PSCC), Dublin, Ireland, 2018, pp. 125.
    29. 29)
      • 11. Anagnostou, G., Pal, B.: ‘Derivative-free Kalman filtering based approaches to dynamic state estimation for power systems with unknown inputs’, IEEE Trans. Power Syst., 2017, 33, (1), pp. 116130.
    30. 30)
      • 15. Astolfi, A., Karagiannis, D., Ortega, R.: ‘Nonlinear and adaptive control with applications’ (Springer-Verlag, Berlin, 2008).
    31. 31)
      • 33. Ghahremani, E., Kamwa, I.: ‘Dynamic state estimation in power systems by applying the extended Kalman filter with unknown inputs to phasor measurements’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 25562566.
    32. 32)
      • 42. Weissbach, T.: ‘Verbesserung des Kraftwerks- und Netzregelverhaltens bezüglich handelsseitiger Fahrplanänderungen’. PhD thesis, University of Stuttgart, 2009.
    33. 33)
      • 14. Singh, A., Pal, B.: ‘Dynamic estimation and control of power systems’ (Academic Press, New York, 2018).
    34. 34)
      • 2. Winter, W., Elkington, K., Bareux, G., et al: ‘Pushing the limits: Europe's new grid: innovative tools to combat transmission bottlenecks and reduced inertia’, IEEE Power Energy Mag., 2015, 13, (1), pp. 6074.
    35. 35)
      • 28. Bobtsov, A., Bazylev, D., Pyrkin, A., et al: ‘A robust nonlinear position observer for synchronous motors with relaxed excitation conditions’, Int. J. Control, 2017, 90, (4), pp. 813824.
    36. 36)
      • 18. Taha, A.F., Qi, J., Wang, J., et al: ‘Risk mitigation for dynamic state estimation against cyber attacks and unknown inputs’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 886899.
    37. 37)
      • 29. Schiffer, J., Aristidou, P., Ortega, R.: ‘Online estimation of power system inertia using dynamic regressor extension and mixing’, IEEE Trans. Power Syst., 2019, 4, (6), pp. 49935001.
    38. 38)
      • 10. Valverde, G., Terzija, V.: ‘Unscented Kalman filter for power system dynamic state estimation’, IET. Gener. Transm. Distrib., 2011, 5, (1), pp. 2937.
    39. 39)
      • 20. Anagnostou, G., Boem, F., Kuenzel, S., et al: ‘Observer-based anomaly detection of synchronous generators for power systems monitoring’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 42284237.
    40. 40)
      • 3. Ulbig, A., Borsche, T.S., Andersson, G.: ‘Impact of low rotational inertia on power system stability and operation’, IFAC Proc. Vol., 2014, 47, (3), pp. 72907297.
    41. 41)
      • 25. Van Cutsem, T., Vournas, C.: ‘Voltage stability of electric power systems’ (Springer, Boston, 1998).
    42. 42)
      • 13. Cui, Y., Kavasseri, R.: ‘A particle filter for dynamic state estimation in multi-machine systems with detailed models’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33773385.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1275
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1275
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address