access icon free Digital image processing for physical basis analysis of electrical failure forecasting in XLPE power cables based on field simulation using finite-element method

In this research, digital image processing method (DIPM) is used as an innovative approach to predict precisely the shape of electrical tree (ET) in cross-linked polyethylene (XLPE) power cables in the presence of air voids based on the field calculation using finite-element method (FEM). With the help of DIPM, two case studies are held to detect the accurate parameters of either the first initiated major branch or the tips of the major branches of ET. A hyperbolic needle-to-plane simulation model is proposed to illustrate the ET inception and propagation stages. The non-uniform electric fields thatare accompanied with the electrical treeing phenomenon are calculated using FEM as one of the most effective numerical methods to deal with non-uniform shapes. The predicted shapes of ET initiation and growth are provided in an innovative manner with the implemented hybrid connection between FEM and DIPM for the two proposed case studies. Direction branching approach and deviation angle branching approach are provided in this work to predict the shape and the direction of ET branched voids. The validity of the proposed model is assessed with the help of available previous experimental and simulation data.

Inspec keywords: power cable insulation; voids (solid); XLPE insulation; power cables; finite element analysis; trees (electrical)

Other keywords: cross-linked polyethylene power cables; deviation angle branching approach; DIPM; XLPE power cables; nonuniform electric fields; finite-element method; FEM; electrical failure forecasting; digital image processing method; hyperbolic needle-to-plane simulation model; field calculation; innovative manner; available previous experimental simulation data; propagation stages; initiated major branch; accurate parameters; effective numerical methods; physical basis analysis; field simulation; air voids; electrical treeing phenomenon; nonuniform shapes; electrical tree

Subjects: Organic insulation; Power cables; Finite element analysis; Optical, image and video signal processing; Computer vision and image processing techniques

References

    1. 1)
      • 31. Vogelsang, R., Farr, T., Frohlich, K.: ‘The effect of barriers on electrical tree propagation in composite insulation materials’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, pp. 373382.
    2. 2)
      • 7. Dissado, L.A.: ‘Understanding electrical trees in solids: from experiment to theory’, IEEE Trans. Dielectr. Electr. Insul., 2002, 9, pp. 483497.
    3. 3)
      • 45. Ho-Le, K.: ‘Finite element mesh generation methods: a review and classification’, Comput.-aided Des., 1988, 20, pp. 2738.
    4. 4)
      • 16. Eichhorn, R.: ‘Treeing in solid extruded electrical insulation’, IEEE Trans. Electr. Insul., 1977, EI-12, pp. 218.
    5. 5)
      • 39. Pennebaker, W.B., Mitchell, J.L.: ‘JPEG: still image data compression standard’ (Kluwer Academic Publishers (KAP) in Amsterdam, Netherlands, 1992).
    6. 6)
      • 26. Fothergill, J., Dissado, L., Sweeney, P.: ‘A discharge-avalanche theory for the propagation of electrical trees. A physical basis for their voltage dependence’, IEEE Trans. Dielectr. Electr. Insul., 1994, 1, pp. 474486.
    7. 7)
      • 19. Gou, B., Abur, A.: ‘A direct numerical method for observability analysis’, IEEE Trans. Power Syst., 2000, 15, pp. 625630.
    8. 8)
      • 4. Rabah, D., Abdelghani, C., Abdelchafik, H.: ‘Efficiency of some optimisation approaches with the charge simulation method for calculating the electric field under extra high voltage power lines’, IET Gener. Transm. Distrib., 2017, 11, pp. 41674174.
    9. 9)
      • 13. Rowland, S.M., Schurch, R., Pattouras, M., et al: ‘Application of FEA to image-based models of electrical trees with uniform conductivity’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, pp. 15371546.
    10. 10)
      • 49. Musa, M., Arief, Y., Abdul-Malek, Z., et al: ‘Influence of nano-titanium dioxide (TiO 2) on electrical tree characteristics in silicone rubber based nanocomposite’. 2013 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, Shenzhen, China, 2013, pp. 498501.
    11. 11)
      • 27. McMahon, E.J.: ‘The chemistry of corona degradation of organic insulating materials in high-voltage fields and under mechanical strain’, IEEE Trans. Electr. Insul., 1968, EI-3, pp. 310.
    12. 12)
      • 5. Cisse, L., Teyssedre, G., Mary, D., et al: ‘Influence of frequency, electrode material and superimposed dc on ac electroluminescence in polymer films’, IEEE Trans. Dielectr. Electr. Insul., 2002, 9, pp. 124129.
    13. 13)
      • 29. El Zein, A.: ‘Electrically induced pressure under switching operation and mechanical tensile strength as a new measurement tool of cable aging’. Conf. Record of the 1996 IEEE Int. Symp. on Electrical Insulation, Montreal, Quebec, Canada, 1996, pp. 155158.
    14. 14)
      • 15. Chen, X., Xu, Y., Cao, X., et al: ‘Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, pp. 847860.
    15. 15)
      • 22. Talaat, M., El-Zein, A., Samir, A.: ‘Numerical and simulation model of the streamer inception at atmospheric pressure under the effect of a non-uniform electric field’, Vacuum, 2019, 160, pp. 197204.
    16. 16)
      • 3. Natarajan, S., Balasubramanian, M., Ghouse, S.M., et al: ‘Morphological studies of electrical tree due to high alternating electric fields in epoxy solid dielectrics’, ARPN J. Eng. Appl. Sci., 2018, 13, pp. 512516.
    17. 17)
      • 37. Berns Roy, S., Billmeyer, S.: ‘Principles of color technology’ (John Wiley & Sons, Inc, 2000, ed).
    18. 18)
      • 41. McAndrew, A.: ‘An introduction to digital image processing with matlab notes for scm2511 image processing’, School of Computer Science and Mathematics, Victoria University of Technology, 2004, 264, pp. 1264.
    19. 19)
      • 24. Mason, J.H.: ‘Breakdown of solid dielectrics in divergent fields’, Proc. IEE-Part C, Monographs, 1955, 102, pp. 254263.
    20. 20)
      • 12. Barclay, A., Stevens, G.: ‘Statistical and fractal characteristics of simulated electrical tree growth’., Sixth Int. Conf. on Dielectric Materials, Measurements and Applications, Manchester, UK, 1992, pp. 1720.
    21. 21)
      • 25. Champion, J., Dodd, S.: ‘The effect of voltage and material age on the electrical tree growth and breakdown characteristics of epoxy resins’, J. Phys. D, Appl. Phys., 1995, 28, p. 398.
    22. 22)
      • 20. Elayyan, H., Abderrazzaq, M.: ‘Electric field computation in wet cable insulation using finite element approach’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, pp. 11251133.
    23. 23)
      • 46. El-Zein, A., Talaat, M., El Bahy, M.: ‘A new method to predict the electrical tree growth in solid insulation’. Proc. of the 16th ISH Conf., Germany, 2009, p. D-15.
    24. 24)
      • 51. Saithanu, T., Suksri, A.: ‘Coconut shell powder and electrical tree inhibition of solid insulator’, Key Eng. Mater., 2018, 775, pp. 8993.
    25. 25)
      • 40. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: ‘Digital image processing using MATLAB’ (Pearson Education India, Upper Saddle River in New Jersey, USA, 2004).
    26. 26)
      • 28. Fothergill, J.: ‘Filamentary electromechanical breakdown’, IEEE Trans. Electr. Insul., 1991, 26, pp. 11241129.
    27. 27)
      • 2. El-Zein, A., Talaat, M., El Bahy, M.: ‘A numerical model of electrical tree growth in solid insulation’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, pp. 17241734.
    28. 28)
      • 18. Lee, J.-H., Park, G.-S., Dong-Young, Y., et al: ‘An accurate method for numerical simulation of electrical tree growth process by finite element method’. Conf. Record of the 1992 IEEE Int. Symp. on Electrical Insulation, Baltimore, MD, USA, 1992, pp. 7073.
    29. 29)
      • 21. Koh, W.H., Park, I.-H.: ‘Numerical simulation of point-to-plane corona discharge using a Monte Carlo method’, Vacuum, 2009, 84, pp. 550553.
    30. 30)
      • 42. Schurch, R., Rowland, S.M., Bradley, R.S., et al: ‘Imaging and analysis techniques for electrical trees using X-ray computed tomography’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, pp. 5363.
    31. 31)
      • 35. Patin, F.: ‘An introduction to digital image processing’, online], available at http://www. programmersheaven. com/articles/patin/ImageProc. pdf, 2003.
    32. 32)
      • 34. Lama, W., Gallo, C.: ‘Systematic study of the electrical characteristics of the``Trichel’’current pulses from negative needle-to-plane coronas’, J. Appl. Phys., 1974, 45, pp. 103113.
    33. 33)
      • 11. Venkatesh, S., Balamurugan, H.: ‘A review on deterministic and stochastic models for electrical treeing initiation and propagation in solid insulation systems from the perspective of prediction assessment techniques’, Int. J. Eng. Technol., 2018, 7, pp. 22712290.
    34. 34)
      • 10. Zheng, H., Chen, G., Rowland, S.M.: ‘The influence of AC and DC voltages on electrical treeing in low density polyethylene’, Int. J. Electr. Power Energy Syst., 2020, 114, p. 105386.
    35. 35)
      • 1. Talaat, M., Tayseer, M., El-Zein, A.: ‘Efficiency of different optimization approaches for optimal parameters of the charge simulation method for investigating the onset field due to corona point’, IET Gener. Transm. Distrib., 2020, 14, pp. 17511761.
    36. 36)
      • 6. Laurent, C., Mayoux, C.: ‘Analysis of the propagation of electrical treeing using optical and electrical methods’, IEEE Trans. Electr. Insul., 1980, EI-15, pp. 3342.
    37. 37)
      • 9. Schurch, R., Ardila-Rey, J., Montana, J., et al: ‘3d characterization of electrical tree structures’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, pp. 220228.
    38. 38)
      • 23. Dissado, L., Hill, R.: ‘The statistics of electrical tree inception’, IEEE Trans. Electr. Insul., 1990, 25, pp. 660666.
    39. 39)
      • 36. Berkner, K.: ‘Image and document capture—state-of-the-art and’, Acad. Press Libr. Signal Process., Image Video Process. Anal. Hardware Audio Acoust. Speech Process., 2013, 4, p. 79.
    40. 40)
      • 47. Wu, K., Xie, H., Suzuoki, Y., et al: ‘The effect of conductivity distribution in tree channel on PD behavior in electrical tree’. Proc. of 1998 Int. Symp. on Electrical Insulating Materials. 1998 Asian Int. Conf. on Dielectrics and Electrical Insulation. 30th Symp. on Electrical Insulating Ma, Toyohashi, Japan, 1998, pp. 701704.
    41. 41)
      • 14. Jabha, D.J., Selvi, K., Joselin, R.: ‘A new approach for the failure prediction in XLPE power cables using acoustic emission technique’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 336345.
    42. 42)
      • 44. Nagakura, S., Noguchi, S., Yamashita, H., et al: ‘Automatic hexahedral mesh generation for FEM using shape recognition technique and tree method [EM field analysis]’, IEEE Trans. Magn., 2002, 38, pp. 417420.
    43. 43)
      • 50. Wang, W., Yang, Y.: ‘The synergistic effects of the micro and nano particles in micro-nano composites on enhancing the resistance to electrical tree degradation’, Sci. Rep., 2017, 7, pp. 110.
    44. 44)
      • 32. El-Zein, A., El Bahy, M., Talaat, M.: ‘Types of electrical trees in solid insulation under electrical and mechanical energy basis’. 2008 12th Int. Middle-East Power System Conf., Aswan, Egypt, 2008, pp. 8084.
    45. 45)
      • 8. Du, B., Xue, J., Su, J., et al: ‘Effects of ambient temperature on electrical tree in epoxy resin under repetitive pulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 15271536.
    46. 46)
      • 17. McKean, A.: ‘Breakdown mechanism studies in crosslinked polyethylene cable’, IEEE Trans. Power Appar. Syst., 1976, 95, pp. 253260.
    47. 47)
      • 33. Cui, Y., Zhu, L., Ji, S., et al: ‘Partial discharge development in needle-plane configuration of oil-paper insulation under AC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 24692476.
    48. 48)
      • 48. Cisse, L., Bamji, S., Bulinski, A.: ‘Electric field calculations for needle-plane geometry and space charge in polyethylene’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, pp. 176180.
    49. 49)
      • 43. Campbell, J.S.: ‘Computer modelling in electrostatics’, in: McAllister, D., Smith, J.R., Diserens, N.J. (eds.): ‘Communications in applied numerical methods’, vol. 2 (Research Studies Press Ltd, Letchworth, 1986), pp. 543543, Price:£ 19.75, ISBN 0 86380 035 1.
    50. 50)
      • 38. Holst, G.C.: ‘CCD arrays, cameras, and displays’, 1998.
    51. 51)
      • 30. Radu, I.: ‘Electric field calculation and the influence of water trees on insulation breakdown in needle–plane geometry’, J. Electrost., 2004, 60, pp. 4967.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1176
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1176
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading