access icon free Stable thin-wire model of buried pipe-type power distribution cables for 3D FDTD transient simulation

Underground cables such as pipe-type cables are widely used in urban power industry. In this study, an advanced thin-wire model of the pipe-type cables is 3D FDTD simulations. In this model, the multi-conductor cables are represented with two-level transmission line equations. A stabilising technique with a 1D spatial low-pass filter is proposed to maintain computational stability. Frequency-dependent losses are fully considered by using a vector-fitting technique. The proposed thin-wire model is validated with the multi-conductor transmission line theory analytically and the traditional FDTD method numerically. Good agreements are observed. It is found that the simulation maintains stability for 360,000-time steps. Compared to the traditional FDTD method, the memory space and computation time of the proposed model can be reduced by 73% and 98%, respectively. Induced lightning currents in a cable connection station are analysed. It is found that, without considering soil ionisation and soil stratification, the peak current in the metallic armour is 1.54 times as much as the one with considering these non-linear effects. It can be reduced by 9.04% and 18.6% if the cable is buried at depths of 1 m and 1.5 m, compared with the case of a 0.5 m buried depth.

Inspec keywords: transmission line theory; finite difference time-domain analysis; electromagnetic wave propagation; low-pass filters; underground cables

Other keywords: two-level transmission line equations; multiconductor cables; pipe-type cables; 1D spatial low-pass filter; cable connection station; traditional FDTD method; buried pipe-type power distribution cables; multiconductor transmission line theory; urban transmission systems; advanced thin-wire model; underground cables

Subjects: Electromagnetic waves: theory; Other numerical methods; Numerical approximation and analysis; Network and transmission line calculations; Electromagnetic wave propagation

References

    1. 1)
      • 3. Nucci, C.A., Rachidi, F.: ‘On the contribution of the electromagnetic field components in field-to-transmission line interaction’, IEEE Trans. Electromagn. Compat., 1995, 37, (4), pp. 505508.
    2. 2)
      • 20. Budner, A.: ‘Introduction of frequency-dependent line parameters into an electromagnetic transients program’, IEEE Trans. Power Appar. Syst., 1970, PAS-89, (1), pp. 8897.
    3. 3)
      • 16. Li, B., Du, Y.P., Chen, M.: ‘An FDTD thin-wire model for lossy wire structures with noncircular cross section’, IEEE Trans. Power Deliv., 2018, 33, (6), pp. 30553064.
    4. 4)
      • 15. Tatematsu, A.: ‘A technique for representing lossy thin wires and coaxial cables for FDTD-based surge simulations’, IEEE Trans. Electromagn. Compat., 2018, 60, (3), pp. 705715.
    5. 5)
      • 12. Taniguchi, Y., Baba, Y., Nagaoka, N., et al: ‘An improved thin wire representation for FDTD computations’, IEEE Trans. Antennas Propag., 2008, 56, (10), pp. 32483252.
    6. 6)
      • 22. Paul, C.R.: ‘Decoupling the multiconductor transmission line equations’, IEEE Trans. Microw. Theory Tech., 1996, 44, (8), pp. 14291440.
    7. 7)
      • 33. Tatematsu, A., Noda, T.: ‘Three-dimensional FDTD calculation of lightning-induced voltages on a multiphase distribution line with the lightning arresters and an overhead shielding wire’, IEEE Trans. Electromagn. Compat., 2014, 56, (1), pp. 159167.
    8. 8)
      • 2. Yee, K.S.: ‘Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media’, IEEE Trans. Antennas Propag., 1966, 14, (3), pp. 302307.
    9. 9)
      • 32. Baba, Y., Rakov, V.: ‘On the transmission line model for lightning return stroke representation’, Geophys. Res. Lett., 2003, 30, (24), 2294.
    10. 10)
      • 31. Ala, G., Buccheri, P.L., Romano, P., et al: ‘Finite difference time domain simulation of earth electrodes soil ionization under lightning surge condition’, IET Sci. Meas. Technol., 2008, 2, (3), pp. 134145.
    11. 11)
      • 13. Asada, T., Baba, Y., Nagaoka, N., et al: ‘An improved thin wire representation for FDTD transient simulations’, IEEE Trans. Electromagn. Compat., 2015, 57, (3), pp. 484487.
    12. 12)
      • 11. Railton, C.J., Paul, D.L., Craddock, I.J., et al: ‘The treatment of geometrically small structures in FDTD by the modification of assigned material parameters’, IEEE Trans. Antennas Propag., 2005, 53, (12), pp. 41294136.
    13. 13)
      • 9. Umashankar, K.R., Taflove, A., Beker, B.: ‘Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity’, IEEE Trans. Antennas Propag., 1987, 35, (11), pp. 12481257.
    14. 14)
      • 27. Doyle, J.F.: ‘Wave propagation in structures: spectral analysis using fast discrete Fourier transforms’ (Springer Science & Business Media, Berlin/Heidelberg, Germany, 1997).
    15. 15)
      • 26. Taflove, A., Hagness, S.C.: ‘Computational electrodynamics: the finite-difference time-domain method’ (Artech house, Norwood, Massachusetts, United States, 2005).
    16. 16)
      • 28. Sarris, C.D.: ‘Extending the stability limit of the FDTD method with spatial filtering’, IEEE Microw. Wirel. Compon. Lett., 2011, 21, (4), pp. 176178.
    17. 17)
      • 18. Guiffaut, C., Reineix, A., Pecqueux, B.: ‘New oblique thin wire formalism in the FDTD method with multiwire junctions’, IEEE Trans. Antennas Propag., 2012, 60, (3), pp. 14581466.
    18. 18)
      • 1. Chowdhuri, P.: ‘Electromagnetic transients in power systems’ (Research Studies Press Somersent, Boston, Massachusetts, United States, 1996).
    19. 19)
      • 8. Holland, R., Simpson, L.: ‘Finite-difference analysis of EMP coupling to thin struts and wires’, IEEE Trans. Electromagn. Compat., 1981, EMC-23, (2), pp. 8897.
    20. 20)
      • 24. de Arizon, P., Dommel, H.W.: ‘Computation of cable impedances based on subdivision of conductors’, IEEE Trans. Power Deliv., 1987, 2, (1), pp. 2127.
    21. 21)
      • 6. Mimouni, A., Rachidi, F., Rubinstein, M.: ‘Electromagnetic fields of a lightning return stroke in presence of a stratified ground’, IEEE Trans. Electromagn. Compat., 2014, 56, (2), pp. 413418.
    22. 22)
      • 25. Schelkunoff, S.A.: ‘The electromagnetic theory of coaxial transmission lines and cylindrical shields’, Bell Labs Tech. J., 1934, 13, (4), pp. 532579.
    23. 23)
      • 19. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10521061.
    24. 24)
      • 10. Noda, T., Yokoyama, S.: ‘Thin wire representation in finite difference time domain surge simulation’, IEEE Trans. Power Deliv., 2002, 17, (3), pp. 840847.
    25. 25)
      • 21. Paul, C.R.: ‘Analysis of multiconductor transmission lines’ (John Wiley & Sons, Hoboken, New Jersey, United States, 2007).
    26. 26)
      • 7. Paul, D., Railton, C., Craddock, I.: ‘Full-wave modelling of coaxial cables by FDTD technique’, Electron. Lett., 2002, 38, (21), pp. 12611262.
    27. 27)
      • 5. Liew, A., Darveniza, M.: ‘Dynamic model of impulse characteristics of concentrated earths’, Proc. Inst. Electr. Eng., 1974, 121, (2), pp. 123135.
    28. 28)
      • 30. Baba, Y., Tanabe, N., Nagaoka, N., et al: ‘Transient analysis of a cable with low-conducting layers by a finite-difference time-domainmethod’, IEEE Trans. Electromagn. Compat., 2004, 46, (3), pp. 488493.
    29. 29)
      • 23. Ametani, A.: ‘A general formulation of impedance and admittance of cables’, IEEE Trans. Power Appar. Syst., 1980, PAS-99, (3), pp. 902910.
    30. 30)
      • 17. Li, B., Du, Y.P., Chen, M.: ‘Thin-wire models for inclined conductors with frequency-dependent losses’, IEEE Trans. Power Deliv., 2019, 35, (3), pp. 10831092.
    31. 31)
      • 29. Berenger, J.-P.: ‘A perfectly matched layer for the absorption of electromagnetic waves’, J. Comput. Phys., 1994, 114, (2), pp. 185200.
    32. 32)
      • 14. Du, Y., Li, B., Chen, M.: ‘The extended thin-wire model of lossy round wire structures for FDTD simulations’, IEEE Trans. Power Deliv., 2017, 32, (6), pp. 24722480.
    33. 33)
      • 4. Borghetti, A., Gutierrez, J.A., Nucci, C.A., et al: ‘Lightning-induced voltages on complex distribution systems: models, advanced software tools and experimental validation’, J. Electrost., 2004, 60, (2-4), pp. 163174.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1150
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1150
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading