access icon free Ensemble empirical mode decomposition-based differential protection scheme for islanded and grid-tied AC microgrid

This study presents a differential protection scheme based on ensemble empirical mode decomposition (EEMD) for AC microgrid. The fault current level is significantly lower during the islanded operation of a microgrid, which leads to the malfunction of the traditional over-current protection scheme. The proposed differential protection scheme uses the spectral differential energy of the first intrinsic mode function extracted from the decomposition of the current signal using EEMD for effective fault detection in the AC microgrid. The proposed EEMD-based differential protection scheme is validated on 10 bus and modified IEEE 34-bus AC microgrid test systems during various shunt faults. Moreover, the performance of the proposed EEMD-based differential protection scheme is evaluated under high fault impedance scenarios. The simulation results reveal that the proposed differential protection scheme can effectively detect the faulty line in an AC microgrid during seamless islanded and grid-tied operations.

Inspec keywords: power distribution lines; power distribution protection; power distribution faults; power generation protection; overcurrent protection; distributed power generation; Hilbert transforms; electric impedance; power grids; fault diagnosis; signal processing; fault currents

Other keywords: grid-tied AC microgrid; fault current level; line faults; current signal decomposition; modified IEEE 34-bus AC microgrid test systems; shunt faults; fault impedance scenarios; islanded operation; spectral differential energy; EEMD; differential protection scheme; first intrinsic mode function; over-current protection scheme; 10-bus AC microgrid test systems; fault detection; ensemble empirical mode decomposition

Subjects: Signal processing and detection; Distribution networks; Power system protection; Integral transforms; Distributed power generation

References

    1. 1)
      • 29. Yu, J.J.Q., Hou, Y., Lam, A.Y.S., et al: ‘Intelligent fault detection scheme for microgrids with wavelet based deep neural networks’, IEEE Trans. Smart Grid, 2019, 10, (2), pp. 16941703.
    2. 2)
      • 9. Salomonsson, D., Soder, L., Sannino, A.: ‘Protection of low-voltage DC microgrids’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10451053.
    3. 3)
      • 13. Overbeeke, F.V.: ‘Fault current source to ensure the fault level in inverter dominated networks’. The 20th Int. Conf. and Exhibition on Electricity Distribution CIRED, Prague, 8–11 June 2009.
    4. 4)
      • 19. Sharaf, H.M., Zeineldin, H.H., El-Saadany, E.: ‘Protection coordination for microgrids with grid-connected and islanded capabilities using communication assisted dual setting directional overcurrent relays’, IEEE Trans. Smart Grid, 2018, 9, (1), pp. 143151.
    5. 5)
      • 17. Srividhya, S., Murali, V.: ‘Effective microgrid restructuring in the presence of high DG proliferation’, IET Gener. Transm. Distrib., 2020, 14, (18), pp. 37833801.
    6. 6)
      • 26. Muda, H., Jena, P.: ‘Superimposed adaptive sequence current based microgrid protection: a new technique’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 757767.
    7. 7)
      • 15. Michael, P., Ted, S.: ‘A survey of techniques used to control microgrid generation and storage during island operation’, Proc. Australian Universities Power Engineering Conf., 2006, 58, pp. 16.
    8. 8)
      • 2. Baziar, A., Kavousi-Fard, A.: ‘Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices’, Renew. Energy, 2013, 59, pp. 158166.
    9. 9)
      • 21. El-Khattam, W., Sidhu, T.S.: ‘Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 576585.
    10. 10)
      • 1. Georgilakis, P.S., Hatziargyriou, N.D.: ‘Optimal distributed generation placement in power distribution networks: models, methods, and future research’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34203428.
    11. 11)
      • 11. Beheshtaein, S., Cuzner, R., Savaghebi, M., et al: ‘Review on microgrids protection’, IET Gener. Transm. Distrib., 2019, 13, (6), pp. 743759.
    12. 12)
      • 6. Ustun, T.S., Ozansoy, C., Zayegh, A.: ‘Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15601567.
    13. 13)
      • 8. Saleh, K.: ‘Protection of multi-terminal remote DC microgrids with overhead lines against temporary and permanent faults’, IET Gener. Transm. Distrib., 2020, 14, (15), pp. 28792889.
    14. 14)
      • 18. Sortomme, E., Venkata, S.S., Mitra, J.: ‘Microgrid protection using communication-assisted digital relays’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27892796.
    15. 15)
      • 3. Puchalapalli, S., Tiwari, S.K., Singh, B., et al: ‘A microgrid based on wind-driven DFIG, DG, and solar PV array for optimal fuel consumption’, IEEE Trans. Ind. Appl., 2020, 56, (5), pp. 46894699.
    16. 16)
      • 28. Mirsaeidi, S., Mat Said, D., Mustafa, M.W., et al: ‘A protection strategy for micro-grids based on positive-sequence component’, IET Renew. Power Gener., 2015, 9, (6), pp. 600609.
    17. 17)
      • 27. Zamani, M.A., Sidhu, T.S., Yazdani, A.: ‘A protection strategy and microprocessor-based relay for low-voltage microgrids’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 18731883.
    18. 18)
      • 12. Bayati, N., Hajizadeh, A., Soltani, M.: ‘Protection in DC microgrids: a comparative review’, IET Smart Grid, 2018, 1, (3), pp. 6675.
    19. 19)
      • 7. Mirsaeidi, S., Said, D.M., Mustafa, M.W., et al: ‘An analytical literature review of the available techniques for the protection of micro-grids’, Int. J. Electr. Power Energy Syst., 2014, 58, pp. 300306.
    20. 20)
      • 16. Brahma, S.M., Girgis, A.A.: ‘Development of adaptive protection scheme for distribution systems with high penetration of distributed generation’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 5663.
    21. 21)
      • 22. Bloemink, J.M., Iravani, M.R.: ‘Control of a multiple source microgrid with built-in islanding detection and current limiting’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 21222132.
    22. 22)
      • 4. Najy, W.K.A., Zeineldin, H.H., Woon, W.L.: ‘Optimal protection coordination for microgrids with grid-connected and islanded capability’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16681677.
    23. 23)
      • 30. Jayamaha, D.K.J.S., Lidula, N.W.A., Rajapakse, A.D.: ‘Wavelet multi-resolution analysis based ann architecture for fault detection and localization in dc microgrids’, IEEE Access, 2019, 7, pp. 145371145384.
    24. 24)
      • 14. Jayawarna, N., Jones, C., Barnes, M., et al: ‘Operating microgrid energy storage control during network faults’. IEEE Int. Conf. on System of Systems Engineering, San Antonio, 16–18 April 2007. doi: 10.1109/SYSOSE.2007.4304254.
    25. 25)
      • 5. Laaksonen, H.J.: ‘Protection principles for future microgrids’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29102918.
    26. 26)
      • 24. Beheshtaein, S., Savaghebi, M., Cuzner, R.M., et al: ‘Modified secondary-control-based fault current limiter for inverters’, IEEE Trans. Ind. Electron., 2019, 66, (6), pp. 47984804.
    27. 27)
      • 10. Sortomme, E., Mapes, G.J., Foster, B.A., et al: ‘Fault analysis and protection of a microgrid’. 40th North American Power Symp., Calgary, 28–30 September 2008.
    28. 28)
      • 23. Dehghanpour, E., Kazemi Karegar, H., Kheirollahi, R., et al: ‘Optimal coordination of directional overcurrent relays in microgrids by using cuckoo linear optimization algorithm and fault current limiter’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 13651375.
    29. 29)
      • 31. Dehghani, M., Khooban, M.H., Niknam, T.: ‘Fast fault detection and classification based on a combination of wavelet singular entropy theory and fuzzy logic in distribution lines in the presence of distributed generations’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 455462.
    30. 30)
      • 20. Shabani, A., Mazlumi, K.: ‘Evaluation of a communication-assisted overcurrent protection scheme for photovoltaic-based DC microgrid’, IEEE Trans. Smart Grid, 2020, 11, (1), pp. 429439.
    31. 31)
      • 32. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., 1998, 454, (1971), pp. 903995.
    32. 32)
      • 25. Meghwani, A., Gokaraju, R., Srivastava, S.C., et al: ‘Local measurements-based backup protection for DC microgrids using sequential analyzing technique’, IEEE Syst. J., 2020, 14, (1), pp. 11591170.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.1117
Loading

Related content

content/journals/10.1049/iet-gtd.2020.1117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading