Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comprehensive review on hierarchical control of cyber-physical microgrid system

A microgrid (MG) is a cyber-physical system that facilitates integration of several distributed renewable energy resources. In the last decade, several efforts were made to standardise the framework of a cyber-physical MG network and its control structure. In this perspective, various studies discussing the different control techniques are reported in the literature. However, a comprehensive and systematic review of a cyber-physical MG is discussed rarely. In this study, a comprehensive review of a MG architecture and hierarchical control structure in both islanded and grid-connected modes are presented. The hierarchical control of the MG includes primary, secondary, and tertiary control. Recent studies provide significant opportunities in dividing the control task among various layers resulting in a distributed framework. This study analyses the cyber and physical networks separately while discussing the primary, centralised, and distributed secondary control levels with their merits, demerits, and typical applications. A Venn diagram analysis is also presented that clearly distinguishes the primary control scheme in different research sub-areas. Furthermore, the MG communication structure, protocols, design, constraints, and cyber security are also reviewed systematically. Finally, future trends are summarised based on the state-of-the-art MG research.

References

    1. 1)
      • 214. Lai, J., Lu, X., Yu, X., et al: ‘Stochastic distributed secondary control for ac microgrids via event-triggered communication’, IEEE Trans. Smart Grid, 2020, 11, (4), pp. 27462759.
    2. 2)
      • 119. Sachs, J., Sawodny, O.: ‘A two-stage model predictive control strategy for economic diesel-pv-battery island microgrid operation in rural areas’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 903913.
    3. 3)
      • 134. Rezaei, M.H., Menhaj, M.B.: ‘Stationary average consensus for high-order multi-agent systems’, IET Control Theory Applic., 2017, 11, (5), pp. 723731.
    4. 4)
      • 126. Meng, L., Zhao, X., Tang, F., et al: ‘Distributed voltage unbalance compensation in islanded microgrids by using a dynamic consensus algorithm’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 827838.
    5. 5)
      • 191. Long, J., Gong, C., Lu, Y.: ‘Tertiary control of islanded microgrids based on a linearized acopf with losses compensation’. 2019 9th Int. Conf. on Power and Energy Systems (ICPES), Autralia, 2019, pp. 18.
    6. 6)
      • 67. He, J., Li, Y.W.: ‘An enhanced microgrid load demand sharing strategy’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 39843995.
    7. 7)
      • 245. Rockefeller, G.D., Wagner, C.L., Linders, J.R., et al: ‘Adaptive transmission relaying concepts for improved performance’, IEEE Trans. Power Deliv., 1988, 3, (4), pp. 14461458.
    8. 8)
      • 54. Vasquez, J.C., Guerrero, J.M., Luna, A., et al: ‘Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 40884096.
    9. 9)
      • 40. Nehrir, H., Wang, C., Strunz, K., et al: ‘A review of hybrid renewable/alternative energy systems for electric power generation: configurations, control and applications’. 2012 IEEE Power and Energy Society General Meeting, USA, 2012, pp. 11.
    10. 10)
      • 133. Xu, J., Zhang, G., Zeng, J., et al: ‘Robust guaranteed cost consensus for high-order discrete-time multi-agent systems with parameter uncertainties and time-varying delays’, IET Control Theory Applic., 2017, 11, (5), pp. 647667.
    11. 11)
      • 187. Barklund, E., Pogaku, N., Prodanovic, M., et al: ‘Energy management in autonomous microgrid using stability-constrained droop control of inverters’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 23462352.
    12. 12)
      • 30. Colson, C.M., Nehrir, M.H.: ‘Algorithms for distributed decision-making for multi-agent microgrid power management’. 2011 Power and Energy Society General Meeting, USA, 2011, pp. 18.
    13. 13)
      • 32. Han, H., Hou, X., Yang, J., et al: ‘Review of power sharing control strategies for islanding operation of ac microgrids’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 200215.
    14. 14)
      • 128. Maknouninejad, A., Qu, Z.: ‘Realizing unified microgrid voltage profile and loss minimization: a cooperative distributed optimization and control approach’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 16211630.
    15. 15)
      • 121. Yang, Q., Barria, J.A., Green, T.C.: ‘Communication infrastructures for distributed control of power distribution networks’, IEEE Trans. Ind. Inf., 2011, 7, (2), pp. 316327.
    16. 16)
      • 210. Li, Z.X., Su, H.Y., Gu, Y., et al: ‘H filtering for discrete-time singular networked systems with communication delays and data missing’, Int. J. Syst. Sci., 2013, 44, (4), pp. 604614.
    17. 17)
      • 95. Sreekumar, P., Khadkikar, V.: ‘A new virtual harmonic impedance scheme for harmonic power sharing in an islanded microgrid’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 936945.
    18. 18)
      • 142. Zuo, S., Davoudi, A., Song, Y., et al: ‘Distributed finite-time voltage and frequency restoration in islanded AC microgrids’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 59885997.
    19. 19)
      • 47. Meng, L., Sanseverino, E.R., Luna, A., et al: ‘Microgrid supervisory controllers and energy management systems: a literature review’, Renew. Sustain. Energy Rev., 2016, 60, pp. 12631273.
    20. 20)
      • 92. Han, H., Liu, Y., Sun, Y., et al: ‘An improved droop control strategy for reactive power sharing in islanded microgrid’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 31333141.
    21. 21)
      • 146. Shrivastava, S., Subudhi, B., Das, S.: ‘Noise-resilient voltage and frequency synchronisation of an autonomous microgrid’, IET Gener. Transm. Distrib., 2019, 13, (2), pp. 189200.
    22. 22)
      • 132. Gang, C., Zhijun, G.: ‘Distributed secondary control for droop-controlled autonomous microgrid’. 2015 34th Chinese Control Conf. (CCC), China, 2015, pp. 90089013.
    23. 23)
      • 93. Perreault, D.J., Selders, R.L., Kassakian, J.G.: ‘Frequency-based current-sharing techniques for paralleled power converters’, IEEE Trans. Power Electron., 1998, 13, (4), pp. 626634.
    24. 24)
      • 233. Brown, H.E., Suryanarayanan, S., Natarajan, S.A., et al: ‘Improving reliability of islanded distribution systems with distributed renewable energy resources’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 20282038.
    25. 25)
      • 42. Yazdanian, M., Mehrizi-Sani, A.: ‘Distributed control techniques in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 29012909.
    26. 26)
      • 102. Meng, L., Savaghebi, M., Andrade, F., et al: ‘Microgrid central controller development and hierarchical control implementation in the intelligent microgrid lab of aalborg university’. 2015 IEEE Applied Power Electronics Conf. and Exposition (APEC), USA, 2015, pp. 25852592.
    27. 27)
      • 185. Robbins, B.A., Hadjicostis, C.N., Dominguez-Garcia, A.D.: ‘A two-stage distributed architecture for voltage control in power distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14701482.
    28. 28)
      • 91. D'Arco, S., Suul, J.A.: ‘Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 394395.
    29. 29)
      • 117. Falahi, M., Butler-Purry, K., Ehsani, M.: ‘Dynamic reactive power control of islanded microgrids’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 36493657.
    30. 30)
      • 36. Dragicevic, T., Lu, X., Vasquez, J.C., et al: ‘DC microgrids–part II: a review of power architectures, applications, and standardization issues’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35283549.
    31. 31)
      • 198. Liu, X., Goldsmith, A.: ‘Wireless medium access control in networked control systems’. Proc. of the 2004 American Control Conf., USA, 2004, vol. 4, pp. 36053610.
    32. 32)
      • 190. Hou, X., Sun, Y., Lu, J., et al: ‘Distributed hierarchical control of ac microgrid operating in grid-connected, islanded and their transition modes’, IEEE Access, 2018, 6, pp. 7738877401.
    33. 33)
      • 123. Keviczky, T., Borrelli, F., Fregene, K., et al: ‘Decentralized receding horizon control and coordination of autonomous vehicle formations’, IEEE Trans. Control Syst. Technol., 2008, 16, (1), pp. 1933.
    34. 34)
      • 81. Lee, C.T., Jiang, R.P., Cheng, P.T.: ‘A grid synchronization method for droop-controlled distributed energy resource converters’, IEEE Trans. Ind. Appl., 2013, 49, (2), pp. 954962.
    35. 35)
      • 131. He, D., Shi, D., Sharma, R.: ‘Consensus-based distributed cooperative control for microgrid voltage regulation and reactive power sharing’. IEEE PES Innovative Smart Grid Technologies, Europe, 2014, pp. 16.
    36. 36)
      • 213. Lai, J., Lu, X.: ‘Nonlinear mean-square power sharing control for ac microgrids under distributed event detection’, IEEE Trans. Ind. Inf., 2021, 17, (1), pp. 219229.
    37. 37)
      • 20. Liang, H., Choi, B.J., Zhuang, W., et al: ‘Stability enhancement of decentralized inverter control through wireless communications in microgrids’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 321331.
    38. 38)
      • 149. McArthur, S.D.J., Davidson, E.M., Catterson, V.M., et al: ‘Multi-agent systems for power engineering applications–part I: concepts, approaches, and technical challenges’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 17431752.
    39. 39)
      • 1. World Energy Outlook 2013, International Energy Agency (IEA), France, Tech. Rep. Available at http://www.iea.org.
    40. 40)
      • 15. Tan, K., Peng, X., So, P.L., et al: ‘Centralized control for parallel operation of distributed generation inverters in microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19771987.
    41. 41)
      • 236. Leon-Aldaco, S.E.D., Calleja, H., Alquicira, J.A.: ‘Metaheuristic optimization methods applied to power converters: a review’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 67916803.
    42. 42)
      • 38. Li, X., Ai, X., Wang, Y.: ‘Study of single-phase HFAC microgrid based on Matlab/Simulink’. 2011 4th Int. Conf. on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), China, 2011, pp. 11041108.
    43. 43)
      • 150. McArthur, S.D.J., Davidson, E.M., Catterson, V.M., et al: ‘Multi-agent systems for power engineering applications–part II: technologies, standards, and tools for building multi-agent systems’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 17531759.
    44. 44)
      • 242. Qiongyao, Z., Shirong, L., Ying, Z., et al: ‘Economic dispatch of distribution network with multi-microgrid’. 2015 34th Chinese Control Conf. (CCC), China, 2015, pp. 90609065.
    45. 45)
      • 207. Wang, J., Zhang, G., Wang, R., et al: ‘A gain-scheduling driver assistance trajectory-following algorithm considering different driver steering characteristics’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 10971108.
    46. 46)
      • 98. Sao, C.K., Lehn, P.W.: ‘Autonomous load sharing of voltage source converters’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 10091016.
    47. 47)
      • 10. Chandorkar, M.C., Divan, D.M., Adapa, R.: ‘Control of parallel connected inverters in standalone ac supply systems’, IEEE Trans. Ind. Appl., 1993, 29, (1), pp. 136143.
    48. 48)
      • 155. Morstyn, T., Hredzak, B., Agelidis, V.G.: ‘Cooperative multi-agent control of heterogeneous storage devices distributed in a dc microgrid’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 29742986.
    49. 49)
      • 37. Chakraborty, S., Weiss, M.D., Simoes, M.G.: ‘Distributed intelligent energy management system for a single-phase high-frequency ac microgrid’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 97109.
    50. 50)
      • 60. Lu, L.Y., Chu, C.C.: ‘Consensus-based droop control synthesis for multiple dics in isolated micro-grids’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 22432256.
    51. 51)
      • 129. Utkarsh, K., Trivedi, A., Srinivasan, D., et al: ‘A consensus-based distributed computational intelligence technique for real-time optimal control in smart distribution grids’, IEEE Trans. Emerging Top. Comput. Intell., 2017, 1, (1), pp. 5160.
    52. 52)
      • 87. Li, Y., Li, Y.W.: ‘Power management of inverter interfaced autonomous microgrid based on virtual frequency-voltage frame’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 3040.
    53. 53)
      • 235. Garcia-Torres, F., Bordons, C., Vazquez, S.: ‘Voltage predictive control for microgrids in islanded mode based on fourier transform’. 2015 IEEE Int. Conf. on Industrial Technology (ICIT), Spain, 2015, pp. 23582363.
    54. 54)
      • 166. Seung, C.T., Saleem, A., Wu, Q., et al: ‘Agent based particle swarm optimization for load frequency control of distribution grid’. 2012 47th Int. Universities Power Engineering Conf. (UPEC), UK, 2012, pp. 16.
    55. 55)
      • 41. Driesen, J., Katiraei, F.: ‘Design for distributed energy resources’, IEEE Power Energy Mag., 2008, 6, (3), pp. 3040.
    56. 56)
      • 22. Tan, J., Lin, H., Zhang, J., et al: ‘A novel load sharing control technique for paralleled inverters’. IEEE 34th Annual Power Electronics Specialist Conf. (PESC’03), Mexio, 2003, vol. 3, pp. 14321437.
    57. 57)
      • 2. Lasseter, R.H.: ‘Microgrids’. 2002 Power Engineering Society Winter Meeting, USA, 2002, vol. 1, pp. 305308.
    58. 58)
      • 5. Martin-Martínez, F., Sánchez-Miralles, A., Rivier, M.: ‘A literature review of microgrids: a functional layer based classification’, Renew. Sustain. Energy Rev., 2016, 62, pp. 11331153.
    59. 59)
      • 66. Tuladhar, A., Jin, H., Unger, T., et al: ‘Control of parallel inverters in distributed AC power systems with consideration of line impedance effect’, IEEE Trans. Ind. Appl., 2000, 36, (1), pp. 131138.
    60. 60)
      • 27. Guerrero, J.M., Hang, L., Uceda, J.: ‘Control of distributed uninterruptible power supply systems’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 28452859.
    61. 61)
      • 84. Savaghebi, M., Jalilian, A., Vasquez, J.C., et al: ‘Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 13901402.
    62. 62)
      • 223. Wei, D., Lu, Y., Jafari, M., et al: ‘Protecting smart grid automation systems against cyberattacks’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 782795.
    63. 63)
      • 157. Li, Z., Zang, C., Zeng, P., et al: ‘MAS based distributed automatic generation control for cyber-physical microgrid system’, IEEE/CAA J. Autom. Sin., 2016, 3, (1), pp. 7889.
    64. 64)
      • 175. Beccuti, A.G., Demiray, T.H., Andersson, G., et al: ‘A lagrangian decomposition algorithm for optimal emergency voltage control’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 17691779.
    65. 65)
      • 162. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: ‘Distributed secondary control for islanded microgrids –A novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    66. 66)
      • 143. Wang, X., Zhang, H., Li, C.: ‘Distributed finite-time cooperative control of droop-controlled microgrids under switching topology’, IET Renew. Power Gener., 2017, 11, (5), pp. 707714.
    67. 67)
      • 170. Che, L., Zhang, X., Shahidehpour, M., et al: ‘Optimal interconnection planning of community microgrids with renewable energy sources’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 10541063.
    68. 68)
      • 8. Silva, M., Morais, H., Vale, Z.: ‘An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation’, Energy Convers. Manage., 2012, 64, pp. 273288.
    69. 69)
      • 14. Olivares, D.E., Cañizares, C.A., Kazerani, M., et al: ‘A centralized optimal energy management system for microgrids’. 2011 IEEE Power and Energy Society General Meeting, USA, 2011, pp. 16.
    70. 70)
      • 251. Bayati, N., Hajizadeh, A., Soltani, M.: ‘Protection in dc microgrids: a comparative review’, IET Smart Grid, 2018, 1, (3), pp. 6675.
    71. 71)
      • 24. Zhang, B., Lam, A.Y., Domínguez-García, A.D., et al: ‘An optimal and distributed method for voltage regulation in power distribution systems’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 17141726.
    72. 72)
      • 50. Li, Z., Shahidehpour, M., Aminifar, F.: ‘Cybersecurity in distributed power systems’, Proc. IEEE, 2017, 105, (7), pp. 13671388.
    73. 73)
      • 12. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    74. 74)
      • 153. Sampaio, R.F., Melo, L.S., Leão, R.P.S., et al: ‘Automatic restoration system for power distribution networks based on multi-agent systems’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 475484.
    75. 75)
      • 53. Vasquez, J.C., Mastromauro, R.A., Guerrero, J.M., et al: ‘Voltage support provided by a droop-controlled multifunctional inverter’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 45104519.
    76. 76)
    77. 77)
      • 51. Wang, C., Zhang, T., Luo, F., et al: ‘Impacts of cyber system on microgrid operational reliability’, IEEE Trans. Smart Grid, 2018, 10, (1), pp. 105115.
    78. 78)
      • 177. Robbins, B.A., Dominguez-Garcia, A.D.: ‘Optimal reactive power dispatch for voltage regulation in unbalanced distribution systems’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 29032913.
    79. 79)
      • 33. Han, Y., Li, H., Shen, P., et al: ‘Review of active and reactive power sharing strategies in hierarchical controlled microgrids’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 24272451.
    80. 80)
      • 52. Falahati, B., Fu, Y.: ‘A study on interdependencies of cyber-power networks in smart grid applications’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), USA, 2012, pp. 18.
    81. 81)
      • 9. Wang, X., Guerrero, J.M., Blaabjerg, F., et al: ‘A review of power electronics based microgrids’, J. Power Electron., 2012, 12, (1), pp. 181192.
    82. 82)
      • 112. Diaz, N.L., Luna, A.C., Vasquez, J.C., et al: ‘Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded ac microgrids’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 52025213.
    83. 83)
      • 73. Goya, T., Omine, E., Kinjyo, Y., et al: ‘Frequency control in isolated island by using parallel operated battery systems applying H control theory based on droop characteristics’, IET Renew. Power Gener., 2011, 5, (2), pp. 160166.
    84. 84)
      • 217. Lai, J., Lu, X., Monti, A., et al: ‘Event-driven distributed active and reactive power dispatch for CCVSI-based distributed generators in ac microgrids’, IEEE Trans. Ind. Appl., 2020, 56, (3), pp. 31253136.
    85. 85)
      • 63. Guerrero, J.M., De-Vicuna, L.G., Matas, J., et al: ‘Output impedance design of parallel-connected ups inverters with wireless load-sharing control’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11261135.
    86. 86)
      • 241. Tsikalakis, A.G., Hatziargyriou, N.D.: ‘Centralized control for optimizing microgrids operation’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 241248.
    87. 87)
      • 225. Yamaguchi, Y., Ogawa, A., Takeda, A., et al: ‘Cyber security analysis of power networks by hypergraph cut algorithms’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 21892199.
    88. 88)
      • 76. Mohamed, Y.A.R.I., El-Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816.
    89. 89)
      • 171. Gan, X., Liu, J., Hao, X.: ‘Emergency logistics scheduling in disaster relief based on a multi-agent genetic algorithm’. 2016 IEEE Congress on Evolutionary Computation (CEC), Canada, 2016, pp. 785792.
    90. 90)
      • 199. Liu, X., Goldsmith, A.: ‘Wireless network design for distributed control’. 2004 43rd IEEE Conf. on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), Bahamas, 2004, vol. 3, pp. 28232829.
    91. 91)
      • 169. Arefifar, S.A., Ordonez, M., Mohamed, Y.A.I.: ‘Voltage and current controllability in multi-microgrid smart distribution systems’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 817826.
    92. 92)
      • 230. Bui, V., Hussain, A., Kim, H.: ‘A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 13231333.
    93. 93)
      • 104. Sagar, P.S.V., Swarup, K.S.: ‘Load frequency control in isolated micro-grids using centralized model predictive control’. 2016 IEEE Int. Conf. on Power Electronics, Drives and Energy Systems (PEDES), India, 2016, pp. 16.
    94. 94)
      • 151. Luo, F., Chen, Y., Xu, Z., et al: ‘Multiagent-based cooperative control framework for microgrids’ energy imbalance', IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 10461056.
    95. 95)
      • 174. Nedic, A., Ozdaglar, A.: ‘Distributed subgradient methods for multi-agent optimization’, IEEE Trans. Autom. Control, 2009, 54, (1), pp. 4861.
    96. 96)
      • 168. Elkhatib, M.E., El-Shatshat, R., Salama, M.M.A.: ‘Novel coordinated voltage control for smart distribution networks with DG’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 598605.
    97. 97)
      • 173. Han, Y., Zhang, K., Li, H., et al: ‘MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview’, IEEE Trans. Power Electron., 2018, 33, (8), pp. 64886508.
    98. 98)
      • 56. Lopes, J.P., Moreira, C., Madureira, A.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    99. 99)
      • 224. Salinas, S.A., Li, P.: ‘Privacy-preserving energy theft detection in microgrids: a state estimation approach’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 883894.
    100. 100)
      • 65. Yu, X., Khambadkone, A.M., Wang, H., et al: ‘Control of parallel-connected power converters for low-voltage microgrid–part I: a hybrid control architecture’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29622970.
    101. 101)
      • 202. Liu, X., Chen, B., Chen, C., et al: ‘Electric power grid resilience with interdependencies between power and communication networks–a review’, IET Smart Grid, 2019, 3, (2), pp. 182193.
    102. 102)
      • 80. Lee, C., Chu, C., Cheng, P.: ‘A new droop control method for the autonomous operation of distributed energy resource interface converters’. 2010 IEEE Energy Conversion Congress and Exposition, USA, 2010, pp. 702709.
    103. 103)
      • 34. Malik, S.M., Ai, X., Sun, Y., et al: ‘Voltage and frequency control strategies of hybrid ac/dc microgrid: a review’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 303313.
    104. 104)
      • 6. Parhizi, S., Lotfi, H., Khodaei, A., et al: ‘State of the art in research on microgrids: a review.’, IEEE Access, 2015, 3, (1), pp. 890925.
    105. 105)
      • 247. Loix, T., Wijnhoven, T., Deconinck, G.: ‘Protection of microgrids with a high penetration of inverter-coupled energy sources’. 2009 CIGRE/IEEE PES Joint Symp. Integration of Wide-Scale Renewable Resources Into the Power Delivery System, Canada, 2009, pp. 16.
    106. 106)
      • 113. Shrivastava, S., Subudhi, B., Das, S.: ‘Distributed voltage and frequency synchronisation control scheme for islanded inverter-based microgrid’, IET Smart Grid, 2018, 1, (2), pp. 4856.
    107. 107)
      • 220. Rehman, S.U., Gruhn, V.: ‘An effective security requirements engineering framework for cyber-physical systems’, Technologies, 2018, 6, (3), p. 65.
    108. 108)
      • 118. Tan, K.T., So, P.L., Chu, Y.C., et al: ‘Coordinated control and energy management of distributed generation inverters in a microgrid’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 704713.
    109. 109)
      • 46. Ponnaluri, S., Linhofer, G.O., Steinke, J.K., et al: ‘Comparison of single and two stage topologies for interface of BESS or fuel cell system using the ABB standard power electronics building blocks’. 2005 European Conf. on Power Electronics and Applications, Germany, 2005, p. 9.
    110. 110)
      • 231. Banerji, A., Biswas, S.K., Singh, B.: ‘Enhancing quality of power to sensitive loads with microgrid’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 360368.
    111. 111)
      • 64. Li, Y.W., Kao, C.N.: ‘An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 29772988.
    112. 112)
      • 152. Cai, N., Mitra, J.: ‘A decentralized control architecture for a microgrid with power electronic interfaces’. North American Power Symp., USA, 2010, pp. 18.
    113. 113)
      • 106. Wang, X., Blaabjerg, F., Chen, Z., et al: ‘A centralized control architecture for harmonic voltage suppression in islanded microgrids’. 37th Annual Conf. of the IEEE Industrial Electronics Society (IECON), Australia, 2011, pp. 30703075.
    114. 114)
      • 189. Pantoja, A., Quijano, N.: ‘A population dynamics approach for the dispatch of distributed generators’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45594567.
    115. 115)
      • 115. Logenthiran, T., Naayagi, R.T., Woo, W.L., et al: ‘Intelligent control system for microgrids using multiagent system’, IEEE J. Emerging Sel. Top. Power Electron., 2015, 3, (4), pp. 10361045.
    116. 116)
      • 165. Abessi, A., Vahidinasab, V., Ghazizadeh, M.S.: ‘Centralized support distributed voltage control by using end-users as reactive power support’, IEEE Trans. Smart Grid, 2016, 7, pp. 178188.
    117. 117)
      • 35. Sahoo, S.K., Sinha, A.K., Kishore, N.: ‘Control techniques in AC, DC, and hybrid AC–DC microgrid: a review’, IEEE J. Emerging Sel. Top. Power Electron., 2018, 6, (2), pp. 738759.
    118. 118)
      • 74. Salamah, A., Finney, S., Williams, B.: ‘Autonomous controller for improved dynamic performance of ac grid, parallel-connected, single-phase inverters’, IET. Gener. Transm. Distrib., 2008, 2, (2), pp. 209218.
    119. 119)
      • 201. Wang, F., Liang, J., Huang, T.: ‘Synchronisation of stochastic delayed multi-agent systems with uncertain communication links and directed topologies’, IET Control Theory Applic., 2017, 11, (1), pp. 90100.
    120. 120)
      • 222. Landoll, D.J., Landoll, D.: ‘The security risk assessment handbook: a complete guide for performing security risk assessments’ (CRC Press, 2005).
    121. 121)
      • 161. Simpson-Porco, J.W., Shafiee, Q., Dorfler, F., et al: ‘Secondary frequency and voltage control of islanded microgrids via distributed averaging’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70257038.
    122. 122)
      • 48. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    123. 123)
      • 17. Shah, J., Wollenberg, B.F., Mohan, N.: ‘Decentralized power flow control for a smart micro-grid’. 2011 Power and Energy Society General Meeting, USA, 2011, pp. 16.
    124. 124)
      • 178. Dall'Anese, E., Dhople, S.V., Johnson, B.B., et al: ‘Decentralized optimal dispatch of photovoltaic inverters in residential distribution systems’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 957967.
    125. 125)
      • 156. Singh, V.P., Kishor, N., Samuel, P.: ‘Distributed multi-agent system-based load frequency control for multi-area power system in smart grid’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 51515160.
    126. 126)
      • 208. Yao, W., Jiang, L., Wen, J., et al: ‘An adaptive wide-area damping controller based on generalized predictive control and model identification’. 2009 Power & Energy Society General Meeting (PES'09), Canada, 2009, pp. 17.
    127. 127)
      • 226. Ten, C., Ginter, A., Bulbul, R.: ‘Cyber-based contingency analysis’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 30403050.
    128. 128)
      • 229. Xu, Z., Yang, P., Zhang, Y., et al: ‘Control devices development of multi-microgrids based on hierarchical structure’, IET Gener. Transm. Distrib., 2016, 10, (16), pp. 42494256.
    129. 129)
      • 182. Wang, Y., Tan, K.T., Peng, X.Y., et al: ‘Coordinated control of distributed energy-storage systems for voltage regulation in distribution networks’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 11321141.
    130. 130)
      • 250. Samantaray, S.R., Joos, G., Kamwa, I.: ‘Differential energy based microgrid protection against fault conditions’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), USA, 2012, pp. 17.
    131. 131)
      • 219. Li, X., Liang, X., Lu, R., et al: ‘Securing smart grid: cyber attacks, countermeasures, and challenges’, IEEE Commun. Mag., 2012, 50, (8), pp. 3845.
    132. 132)
      • 75. Yajuan, G., Weiyang, W., Xiaoqiang, G., et al: ‘An improved droop controller for grid-connected voltage source inverter in microgrid’. 2010 2nd IEEE Int. Symp. on Power Electronics for Distributed Generation Systems (PEDG), China, 2010, pp. 823828.
    133. 133)
      • 97. Sao, C.K., Lehn, P.W.: ‘Control and power management of converter fed microgrids’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 10881098.
    134. 134)
      • 140. Dehkordi, N.M., Sadati, N., Hamzeh, M.: ‘Distributed robust finite-time secondary voltage and frequency control of islanded microgrids’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 36483659.
    135. 135)
      • 127. Xu, Y., Li, Z.: ‘Distributed optimal resource management based on the consensus algorithm in a microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 25842592.
    136. 136)
      • 96. He, J., Li, Y.W.: ‘An accurate reactive power sharing control strategy for dg units in a microgrid’. 2011 IEEE 8th Int. Conf. on Power Electronics and ECCE Asia (ICPE & ECCE), 2011, pp. 551556.
    137. 137)
      • 205. Fang, H., Wu, Z., Wei, J.: ‘Improvement for consensus performance of multi-agent systems based on weighted average prediction’, IEEE Trans. Autom. Control, 2012, 57, (1), pp. 249254.
    138. 138)
      • 244. Bracale, A., Caramia, P., Mottola, F.: ‘A cost minimization strategy for the control of hybrid ac-dc microgrids in industrial systems’. 2015 Int. Conf. on Clean Electrical Power (ICCEP), Italy, 2015, pp. 4047.
    139. 139)
      • 144. Deng, Z., Xu, Y., Sun, H., et al: ‘Distributed, bounded and finite-time convergence secondary frequency control in an autonomous microgrid’, IEEE Trans. Smart Grid, 2019, 10, (3), pp. 27762788.
    140. 140)
      • 139. Zuo, Z., Tie, L.: ‘Distributed robust finite-time nonlinear consensus protocols for multi-agent systems’, Int. J. Syst. Sci., 2016, 47, (6), pp. 13661375.
    141. 141)
      • 82. Lee, C.T., Chu, C.C., Cheng, P.T.: ‘A new droop control method for the autonomous operation of distributed energy resource interface converters’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 19801993.
    142. 142)
      • 197. Cao, J., Ma, M., Li, H., et al: ‘A survey on security aspects for lte and LTE-a networks’, IEEE Commun. Surv. Tutor., 2014, 16, (1), pp. 283302.
    143. 143)
      • 26. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Distributed cooperative secondary control of microgrids using feedback linearization’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34623470.
    144. 144)
      • 116. Lou, G., Gu, W., Xu, Y., et al: ‘Distributed mpc-based secondary voltage control scheme for autonomous droop-controlled microgrids’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 792804.
    145. 145)
      • 105. Hajar, K., Hably, A., Bacha, S., et al: ‘An application of a centralized model predictive control on microgrids’. 2016 IEEE Electrical Power and Energy Conf. (EPEC), Canada, 2016, pp. 16.
    146. 146)
      • 234. Zhifeng, L., Zhiyuan, Q.: ‘Coordination control based on multi-agent for dc micro-grid’. The 27th Chinese Control and Decision Conf. (CCDC), China, 2015, pp. 48034806.
    147. 147)
      • 109. Brandao, D.I., Caldognetto, T., Marafão, F.P., et al: ‘Centralized control of distributed single-phase inverters arbitrarily connected to three-phase four-wire microgrids’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 437446.
    148. 148)
      • 45. Rahim, N.A., Omar, A.M.: ‘Three-phase single-stage high-voltage dc converter’, IEEE Proc. Gener. Transm. Distrib., 2002, 149, (5), pp. 505509.
    149. 149)
      • 186. Vanthournout, K., De-Brabandere, K., Haesen, E., et al: ‘Agora: distributed tertiary control of distributed resources’. Proc. 15th Power Systems Computation Conf., Belgium, 2005, pp. 17.
    150. 150)
      • 227. Buczak, A.L., Guven, E.: ‘A survey of data mining and machine learning methods for cyber security intrusion detection’, IEEE Commun. Surv. Tutor., 2016, 18, (2), pp. 11531176.
    151. 151)
      • 145. Lu, X., Yu, X., Lai, J., et al: ‘A novel distributed secondary coordination control approach for islanded microgrids’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 27262740.
    152. 152)
      • 130. Bolognani, S., Zampieri, S.: ‘A distributed control strategy for reactive power compensation in smart microgrids’, IEEE Trans. Autom. Control, 2013, 58, (11), pp. 28182833.
    153. 153)
      • 246. Tumilty, R.M., Brucoli, M., Burt, G.M., et al: ‘Approaches to network protection for inverter dominated electrical distribution systems’. 2006 3rd IET Int. Conf. on Power Electronics Machines and Drives (PEMD 2006), Dublin, 2006, pp. 622626.
    154. 154)
      • 55. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257.
    155. 155)
      • 85. He, J., Li, Y.W., Guerrero, J.M., et al: ‘An islanding microgrid power sharing approach using enhanced virtual impedance control scheme’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 52725282.
    156. 156)
      • 160. Lai, J., Zhou, H., Lu, X., et al: ‘Droop-based distributed cooperative control for microgrids with time-varying delays’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 17751789.
    157. 157)
      • 16. Kim, J., Guerrero, J.M., Rodriguez, P., et al: ‘Mode adaptive droop control with virtual output impedances for an inverter-based flexible ac microgrid’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 689701.
    158. 158)
      • 11. Bidram, A., Davoudi, A.: ‘Hierarchical structure of microgrids control system’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19631976.
    159. 159)
      • 237. Saad, W., Han, Z., Poor, H.V., et al: ‘Game-theoretic methods for the smart grid: an overview of microgrid systems, demand-side management, and smart grid communications’, IEEE Signal Process. Mag., 2012, 29, (5), pp. 86105.
    160. 160)
      • 49. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Secondary control of microgrids based on distributed cooperative control of multi-agent systems’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 822831.
    161. 161)
      • 188. Hernandez-Aramburo, C.A., Green, T.C., Mugniot, N.: ‘Fuel consumption minimization of a microgrid’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 673681.
    162. 162)
      • 44. Peng, F.Z., Li, Y.W., Tolbert, L.M.: ‘Control and protection of power electronics interfaced distributed generation systems in a customer-driven microgrid’. 2009 IEEE Power Energy Society General Meeting, USA, 2009, pp. 18.
    163. 163)
      • 71. Moawwad, A., Khadkikar, V., Kirtley, J.L.: ‘A new PQV droop control method for an interline photovoltaic (i-pv) power system’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 658668.
    164. 164)
      • 94. Tuladhar, A., Jin, H., Unger, T., et al: ‘Parallel operation of single phase inverter modules with no control interconnections’. 1997 Conf. Proc. on Twelfth Annual Applied Power Electronics Conf. and Exposition (APEC'97), USA, 1997, vol. 1, pp. 94100.
    165. 165)
      • 184. Reeves, D., Nourbakhsh, G., Mokhtari, G., et al: ‘A distributed control based coordination scheme of household PV systems for overvoltage prevention’. 2013 IEEE Power Energy Society General Meeting, USA, 2013, pp. 15.
    166. 166)
      • 19. Shahnia, F., Majumder, R., Ghosh, A., et al: ‘Operation and control of a hybrid microgrid containing unbalanced and nonlinear loads’, Electr. Power Syst. Res., 2010, 80, (8), pp. 954965.
    167. 167)
      • 72. Hanaoka, H., Nagai, M., Yanagisawa, M.: ‘Development of a novel parallel redundant ups’. The 25th Int. Telecommunications Energy Conf. (INTELEC'03), Japan, 2003, pp. 493498.
    168. 168)
      • 83. De-Brabandere, K., Bolsens, B., Van den Keybus, J., et al: ‘A voltage and frequency droop control method for parallel inverters’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 11071115.
    169. 169)
      • 195. Li, H., Dimitrovski, A., Song, J.B., et al: ‘Communication infrastructure design in cyber physical systems with applications in smart grids: a hybrid system framework’, IEEE Commun. Surv. Tutor., 2014, 16, (3), pp. 16891708.
    170. 170)
      • 4. Majumder, R., Chaudhuri, B., Ghosh, A., et al: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808.
    171. 171)
      • 124. Nedic, A., Ozdaglar, A., Parrilo, P.A.: ‘Constrained consensus and optimization in multi-agent networks’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 922938.
    172. 172)
      • 58. Wu, T., Siri, K., Banda, J.: ‘The central-limit control and impact of cable resistance in current distribution for parallel-connected dc–dc converters’. 25th Annual IEEE Power Electronics Specialists Conf. PESC'94 Record, Taiwan, 1994, vol. 1, pp. 694702.
    173. 173)
      • 61. Delghavi, M.B., Yazdani, A.: ‘An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 17641773.
    174. 174)
      • 122. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    175. 175)
      • 108. Karimi, M., Wall, P., Mokhlis, H., et al: ‘A new centralized adaptive underfrequency load shedding controller for microgrids based on a distribution state estimator’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 370380.
    176. 176)
      • 163. Guo, F., Wen, C., Mao, J., et al: ‘Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 43554364.
    177. 177)
      • 147. Shrivastava, S., Subudhi, B.: ‘Distributed, fixed-time, and bounded control for secondary voltage and frequency restoration in islanded microgrids’, IET Smart Grid, 2019, 2, (2), pp. 260268.
    178. 178)
      • 57. Pradhan, B.R.: ‘A comparative study on maximum power point tracking techniques for photovoltaic power systems’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 8998.
    179. 179)
      • 238. Ekneligoda, N.C., Weaver, W.W.: ‘Game-theoretic communication structures in microgrids’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 23342341.
    180. 180)
      • 107. Olivares, D.E., Cañizares, C.A., Kazerani, M.: ‘A centralized energy management system for isolated microgrids’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18641875.
    181. 181)
      • 141. Xu, Y., Sun, H.: ‘Distributed finite-time convergence control of an islanded low-voltage AC microgrid’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 23392348.
    182. 182)
      • 28. Cai, N., Xu, X., Mitra, J.: ‘A hierarchical multi-agent control scheme for a black start-capable microgrid’. 2011 Power and Energy Society General Meeting, USA, 2011, pp. 17.
    183. 183)
      • 212. Montestruque, L.A., Antsaklis, P.J.: ‘Quantization in model based networked control systems’. Proc. 16th IFAC World Congress, Prague, 2005.
    184. 184)
      • 79. Majumder, R., Ledwich, G., Ghosh, A., et al: ‘Droop control of converter-interfaced microsources in rural distributed generation’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27682778.
    185. 185)
      • 77. Guerrero, J.M., de Vicuna, L.G., Matas, J., et al: ‘A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 12051213.
    186. 186)
      • 240. Mojica-Nava, E., Barreto, C., Quijano, N.: ‘Population games methods for distributed control of microgrids’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 25862595.
    187. 187)
      • 13. Guerrero, J.M., Chandorkar, M., Lee, T.L., et al: ‘Advanced control architectures for intelligent microgrids – part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    188. 188)
      • 68. Guerrero, J.M., Matas, J., de Vicuna, L.G., et al: ‘Decentralized control for parallel operation of distributed generation inverters using resistive output impedance’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 9941004.
    189. 189)
      • 216. Lai, J., Lu, X., Yu, X., et al: ‘Distributed voltage regulation for cyber-physical microgrids with coupling delays and slow switching topologies’, IEEE Trans. Syst. Man Cybern., Syst., 2020, 50, (1), pp. 100110.
    190. 190)
      • 204. Wu, Z., Fang, H., She, Y.: ‘Weighted average prediction for improving consensus performance of second-order delayed multi-agent systems’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2012, 42, (5), pp. 15011508.
    191. 191)
      • 3. Liserre, M., Sauter, T., Hung, J.Y.: ‘Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics’, IEEE Ind. Electron. Mag., 2010, 4, (1), pp. 1837.
    192. 192)
      • 243. Mukherjee, S., Chakraborty, R., Goswami, S.K.: ‘Economic generation scheduling in microgrid with pumped-hydro unit using particle swarm optimization’. 2015 IEEE Int. Conf. on Electrical, Computer and Communication Technologies (ICECCT), India, 2015, pp. 15.
    193. 193)
      • 164. Nasirian, V., Shafiee, Q., Guerrero, J.M., et al: ‘Droop-free distributed control for ac microgrids’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 16001617.
    194. 194)
      • 203. Yu, X.M., Jiang, J.P.: ‘Adaptive networked control system based on delay prediction using neural network’, J. Zhejiang Univ. (Eng. Sci.), 2012, 46, (2), pp. 194198.
    195. 195)
      • 89. Li, Y., Li, Y.W.: ‘Virtual frequency-voltage frame control of inverter based low voltage microgrid’. Electrical Power & Energy Conf. (EPEC), Canada, 2009, pp. 16.
    196. 196)
      • 23. Sun, X., Lee, Y.S., Xu, D.: ‘Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme’, IEEE Trans. Power Electron., 2003, 18, (3), pp. 844856.
    197. 197)
      • 43. Katiraei, F., Iravani, R., Hatziargyriou, N., et al: ‘Microgrids management’, IEEE Power Energy Mag., 2008, 6, (3), pp. 5465.
    198. 198)
      • 39. Gupta, A., Doolla, S., Chatterjee, K.: ‘Hybrid ac–dc microgrid: systematic evaluation of control strategies’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 38303843.
    199. 199)
      • 159. Schiffer, J., Seel, T., Raisch, J., et al: ‘Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control’, IEEE Trans. Control Syst. Technol., 2016, 24, (1), pp. 96109.
    200. 200)
      • 193. Matveev, A.S., Savkin, A.V.: ‘Estimation and control over communication networks’ (Springer Science & Business Media, 2009).
    201. 201)
      • 125. Xu, Y., Liu, W.: ‘Novel multiagent based load restoration algorithm for microgrids’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 152161.
    202. 202)
      • 194. Grid, O.S.: ‘SG network system requirements specification’ (US Department of Energy, 2010).
    203. 203)
      • 154. Li, Q., Chen, F., Chen, M., et al: ‘Agent-based decentralized control method for islanded microgrids’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 637649.
    204. 204)
      • 18. Iyer, S.V., Belur, M.N., Chandorkar, M.C.: ‘A generalized computational method to determine stability of a multi-inverter microgrid’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 24202432.
    205. 205)
      • 29. Dou, C.X., Liu, B.: ‘Multi-agent based hierarchical hybrid control for smart microgrid’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 771778.
    206. 206)
      • 103. Babqi, A.J., Yi, Z., Etemadi, A.H.: ‘Centralized finite control set model predictive control for multiple distributed generator small-scale microgrids’. 2017 North American Power Symp. (NAPS), USA, 2017, pp. 15.
    207. 207)
      • 69. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    208. 208)
      • 176. Hug-Glanzmann, G., Andersson, G.: ‘Decentralized optimal power flow control for overlapping areas in power systems’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 327336.
    209. 209)
      • 196. Bani-Ahmed, A., Weber, L., Nasiri, A., et al: ‘Microgrid communications: state of the art and future trends’. 2014 Int. Conf. on Renewable Energy Research and Application (ICRERA), USA, 2014, pp. 780785.
    210. 210)
      • 21. Prodanović, M., Green, T., Mansir, H.: ‘A survey of control methods for three-phase inverters in parallel connection’. Proc. Institute of Electrical Engineering Int. Conf. Power on Electronics Variable Speed Drives 475, London, UK, 2000, pp. 472477.
    211. 211)
      • 136. Cady, S.T., Dominguez-Garcia, A.D., Hadjicostis, C.N.: ‘Finite-time approximate consensus and its application to distributed frequency regulation in islanded ac microgrids’. 2015 48th Hawaii Int. Conf. on System Sciences, USA, 2015, pp. 26642670.
    212. 212)
      • 100. Mehrizi-Sani, A., Iravani, R.: ‘Potential-function based control of a microgrid in islanded and grid-connected modes’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 18831891.
    213. 213)
      • 111. Seyedi, Y., Karimi, H., Guerrero, J.M.: ‘Centralized disturbance detection in smart microgrids with noisy and intermittent synchrophasor data’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 27752783.
    214. 214)
      • 78. Rokrok, E., Golshan, M.E.H.: ‘Adaptive voltage droop scheme for voltage source converters in an islanded multibus microgrid’, IET. Gener. Transm. Distrib., 2010, 4, (5), pp. 562578.
    215. 215)
      • 218. Case, D.U.: ‘Analysis of the cyber attack on the ukrainian power grid’. Electricity Information Sharing and Analysis Center (E-ISAC), 2016.
    216. 216)
      • 192. Shukla, S., Deng, Y., Shukla, S., et al: ‘Construction of a microgrid communication network’. Innovative Smart Grid Technologies (ISGT), USA, 2014, pp. 15.
    217. 217)
      • 180. Farag, H.E.Z., El-Saadany, E.F.: ‘A novel cooperative protocol for distributed voltage control in active distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 16451656.
    218. 218)
      • 209. Wen, D., Yang, G.H.: ‘Dynamic output feedback H control for networked control systems with quantisation and random communication delays’, Int. J. Syst. Sci., 2011, 42, (10), pp. 17231734.
    219. 219)
      • 7. ‘Berkeley Lab: Microgrids at Berkeley Lab. Available at https://building-microgrid.lbl.gov/examples-microgrids (accessed 6 November 2016).
    220. 220)
      • 239. Mojica-Nava, E., Macana, C.A., Quijano, N.: ‘Dynamic population games for optimal dispatch on hierarchical microgrid control’, IEEE Trans. Syst. Man Cybern., Syst., 2014, 44, (3), pp. 306317.
    221. 221)
      • 110. Morales-Paredes, H.K., Bonaldo, J.P., Pomilio, J.A.: ‘Centralized control center implementation for synergistic operation of distributed multifunctional single-phase grid-tie inverters in a microgrid’, IEEE Trans. Ind. Electron., 2018, 65, (10), pp. 80188029.
    222. 222)
      • 211. Seiler, P., Sengupta, R.: ‘Analysis of communication losses in vehicle control problems’. Proc. 2001 American Control Conf. (Cat. No. 01CH37148), USA, 2001, vol. 2, pp. 14911496.
    223. 223)
      • 181. Collins, M.E., Silversides, R.W., Green, T.C.: ‘Control and coordination of a distribution network via decentralised decision making’. Power and Energy Society General Meeting (PES 2013), Canada, 2013, pp. 15.
    224. 224)
      • 138. Mahmood, H., Michaelson, D., Jiang, J.: ‘Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 16051617.
    225. 225)
      • 101. Chuang, A., McGranaghan, M., Grady, M.: ‘Master controller requirements specification for perfect power systems’, Galvin Electricity Initiative, 2007.
    226. 226)
      • 31. Colson, C.M., Nehrir, M.H.: ‘Comprehensive real-time microgrid power management and control with distributed agents’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 617627.
    227. 227)
      • 114. Mao, M., Jin, P., Hatziargyriou, N.D., et al: ‘Multiagent-based hybrid energy management system for microgrids’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 938946.
    228. 228)
      • 172. Zhang, Y., Zhang, T., Wang, R., et al: ‘An innovative real-time price based distributed optimal energy management of multi-microgrids in a smart distribution system’. 2016 IEEE Innovative Smart Grid Technologies – Asia (ISGT–Asia), Australia, 2016, pp. 341346.
    229. 229)
      • 206. Liu, S., Wang, X., Liu, P.X.: ‘Impact of communication delays on secondary frequency control in an islanded microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 20212031.
    230. 230)
      • 90. Arani, M.F.M., El-Saadany, E.F.: ‘Implementing virtual inertia in dfig-based wind power generation’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13731384.
    231. 231)
      • 215. Lai, J., Lu, X., Yu, X.: ‘Stochastic distributed frequency and load sharing control for microgrids with communication delays’, IEEE Syst. J., 2019, 13, (4), pp. 42694280.
    232. 232)
      • 70. Chen, J., Wang, L., Diao, L., et al: ‘Distributed auxiliary inverter of urban rail train–load sharing control strategy under complicated operation condition’, IEEE Trans Power Electron, 2016, 31, (3), pp. 25182529.
    233. 233)
      • 183. Mokhtari, G., Nourbakhsh, G., Ghosh, A.: ‘Smart coordination of energy storage units (esus) for voltage and loading management in distribution networks’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 48124820.
    234. 234)
      • 88. Li, Y., Li, Y.W.: ‘Decoupled power control for an inverter based low voltage microgrid in autonomous operation’. IEEE 6th Int. Power Electronics and Motion Control Conf. (IPEMC'09), China, 2009, pp. 24902496.
    235. 235)
      • 86. Lee, C.T., Chuang, C.C., Chu, C.C., et al: ‘Control strategies for distributed energy resources interface converters in the low voltage microgrid’. 2009 Energy Conversion Congress and Exposition (ECCE), USA, 2009, pp. 20222029.
    236. 236)
      • 228. Zhou, H., Bhattacharya, T., Tran, D., et al: ‘Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 923930.
    237. 237)
      • 25. Bolognani, S., Carli, R., Cavraro, G., et al: ‘Distributed reactive power feedback control for voltage regulation and loss minimization’, IEEE Trans. Autom. Control, 2015, 60, (4), pp. 966981.
    238. 238)
      • 248. Wang, X., Li, Y., Yu, Y.: ‘Research on the relay protection system for a small laboratory-scale microgrid system’. 2011 6th IEEE Conf. on Industrial Electronics and Applications, China, 2011, pp. 27122716.
    239. 239)
      • 249. Dewadasa, M., Ghosh, A., Ledwich, G.: ‘Protection of microgrids using differential relays’. Australasian Universities Power Engineering Conf. (AUPEC), Autralia, 2011, pp. 16.
    240. 240)
      • 167. Yeh, W., Lin, Y., Chung, Y.Y., et al: ‘A particle swarm optimization approach based on monte carlo simulation for solving the complex network reliability problem’, IEEE Trans. Reliab., 2010, 59, (1), pp. 212221.
    241. 241)
      • 221. Yaacoub, J.P.A., Salman, O., Noura, H.N., et al: ‘Cyber-physical systems security: limitations, issues and future trends’, Microprocess. Microsyst., 2020, 77, p. 103201.
    242. 242)
      • 99. Zhong, Q.C.: ‘Robust droop controller for accurate proportional load sharing among inverters operated in parallel’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12811290.
    243. 243)
      • 137. Zhu, Y., Zhuo, F., Wang, F., et al: ‘A virtual impedance optimization method for reactive power sharing in networked microgrid’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 28902904.
    244. 244)
      • 59. Abdelaziz, M.M.A., Shaaban, M.F., Farag, H.E.: ‘A multistage centralized control scheme for islanded microgrids with PEVs’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 927937.
    245. 245)
      • 158. Liu, W., Gu, W., Sheng, W., et al: ‘Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 446456.
    246. 246)
      • 120. Olfati-Saber, R., Fax, J.A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    247. 247)
      • 232. Vandoorn, T.L., Renders, B., Degroote, L., et al: ‘Active load control in islanded microgrids based on the grid voltage’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 139151.
    248. 248)
      • 135. Bidram, A., Davoudi, A., Lewis, F.L.: ‘Finite-time frequency synchronization in microgrids’. Energy Conversion Congress and Exposition (ECCE), USA, 2014, pp. 26482654.
    249. 249)
      • 200. Xiao, L., Johansson, M., Hindi, H., et al: ‘Joint optimization of communication rates and linear systems’, IEEE Trans. Autom. Control, 2003, 48, (1), pp. 148153.
    250. 250)
      • 179. Farag, H.E., El-Saadany, E.F., Seethapathy, R.: ‘A two ways communication-based distributed control for voltage regulation in smart distribution feeders’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 271281.
    251. 251)
      • 62. Lu, X., Guerrero, J.M., Sun, K., et al: ‘An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 18001812.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0971
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0971
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address