Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Hybrid control strategy for effective frequency regulation and power sharing in multi-terminal HVDC grids

Hybrid control strategy for effective frequency regulation and power sharing in multi-terminal HVDC grids

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a hybrid control (HC) strategy for improved frequency regulation and power sharing in multi-terminal HVDC (MTDC) integrated AC grids. The proposed method uses the topology of bi-polar converters in the MTDC system to improve power sharing and frequency regulation. In this methodology, the two voltage source converters (VSCs) in a bi-polar topology are operated with individual specified control methods. In the proposed HC method, one of the converters operate in voltage square frequency droop () and another in power frequency droop (Pf) control methods. This HC strategy is implemented for grid side voltage source converters in MTDC grids. Further, the performance of frequency regulation and autonomous power sharing of the proposed HC technique is compared with the conventional voltage and frequency droop (PVf) and improved control methodologies. In order to validate the proposed method, two AC-MTDC systems are considered. In both the systems, mesh typed MTDC CIGRE B4 DC test system is in common, it is integrated with two-area power system and New England IEEE 39-bus system to form two different AC-MTDC systems.

References

    1. 1)
      • 14. Kirakosyan, A., El-Saadany, E.F., Moursi, M.S.E., et al: ‘Dc voltage regulation and frequency support in pilot voltage droop-controlled multiterminal hvdc systems’, IEEE Trans. Power Deliv., 2018, 33, (3), pp. 11531164.
    2. 2)
      • 10. Andreasson, M., Wiget, R., Dimarogonas, D.V., et al: ‘Distributed frequency control through mtdc transmission systems’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 250260.
    3. 3)
      • 37. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’, vol. 7 (McGraw-Hill, New York, NY, USA, 1994).
    4. 4)
      • 24. Leon, A.E.: ‘Short-term frequency regulation and inertia emulation using an mmc-based mtdc system’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 28542863.
    5. 5)
      • 6. Chaudhuri, N., Chaudhuri, B., Majumder, R., et al: ‘Multi-terminal direct-current grids: modeling, analysis, and control’ vol. 9781118729106 (Wiley-Blackwell, United Kingdom, 2014).
    6. 6)
      • 30. Haileselassie, T.M., Uhlen, K.: ‘Impact of dc line voltage drops on power flow of mtdc using droop control’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14411449.
    7. 7)
      • 15. Wang, W., Li, Y., Cao, Y., et al: ‘Adaptive droop control of vsc-mtdc system for frequency support and power sharing’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 12641274.
    8. 8)
      • 9. Rouzbehi, K., Zhang, W., Ignacio Candela, J., et al: ‘Unified reference controller for flexible primary control and inertia sharing in multi-terminal voltage source converter-hvdc grids’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 750758.
    9. 9)
      • 23. Vennelaganti, S.G., Chaudhuri, N.R.: ‘Ratio-based selective inertial and primary frequency support through mtdc grids with offshore wind farms’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 72777287.
    10. 10)
      • 33. Cao, J., Du, W., Wang, H.F., et al: ‘Minimization of transmission loss in meshed ac/dc grids with vsc-mtdc networks’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 30473055.
    11. 11)
      • 19. Silva, B., Moreira, C.L., Seca, L., et al: ‘Provision of inertial and primary frequency control services using offshore multiterminal hvdc networks’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 800808.
    12. 12)
      • 16. Wen, Y., Zhan, J., Chung, C.Y., et al: ‘Frequency stability enhancement of integrated ac/vsc-mtdc systems with massive infeed of offshore wind generation’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 51355146.
    13. 13)
      • 20. Kou, P., Liang, D., Wu, Z., et al: ‘Frequency support from a dc-grid offshore wind farm connected through an hvdc link: a communication-free approach’, IEEE Trans. Energy Convers., 2018, 33, (3), pp. 12971310.
    14. 14)
      • 17. Ye, H., Pei, W., Kong, L., et al: ‘Low-order response modeling for wind farm-mtdc participating in primary frequency controls’, IEEE Trans. Power Syst., 2019, 34, (2), pp. 942952.
    15. 15)
      • 34. Rouzbehi, K., Miranian, A., Luna, A., et al: ‘Dc voltage control and power sharing in multiterminal dc grids based on optimal dc power flow and voltage-droop strategy’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 2, (4), pp. 11711180.
    16. 16)
      • 12. Sun, K., Xiao, H., Sundaresh, L., et al: ‘Frequency response reserves sharing across asynchronous grids through mtdc system’, IET Gener. Transm. Distrib., 2019, 13, (21), pp. 49524959.
    17. 17)
      • 13. McNamara, P., Milano, F.: ‘Model predictive control-based agc for multi-terminal hvdc-connected ac grids’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 10361048.
    18. 18)
      • 27. Peralta, J., Saad, H., Dennetiere, S., et al: ‘Detailed and averaged models for a 401-level mmc–hvdc system’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 15011508.
    19. 19)
      • 3. Van Hertem, D., Gomis-Bellmunt, O., Liang, J.: ‘HVDC grids: for offshore and supergrid of the future’. vol. 51 (John Wiley & Sons, Switzerland, 2016).
    20. 20)
      • 29. Vrana, T.K., Yang, Y., Jovcic, D., et al: ‘The cigre b4 dc grid test system’, Electra, 2013, 270, (1), pp. 1019.
    21. 21)
      • 18. Phulpin, Y.: ‘Communication-free inertia and frequency control for wind generators connected by an hvdc-link’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 11361137.
    22. 22)
      • 2. Hertem, D.V., Ghandhari, M.: ‘Multi-terminal vsc hvdc for the european supergrid: obstacles’, Renew. Sustain. Energy Rev., 2010, 14, (9), pp. 31563163. Available at http://www.sciencedirect.com/science/article/pii/S1364032110002480.
    23. 23)
      • 5. COMMISSION, T.E.: ‘Commission regulation (eu) 2016/1447 of 26 August 2016. establishing ‘establishing a network code on requirements for grid connection of high voltage direct current systems and direct current-connected power park modules’.
    24. 24)
      • 39. Gavriluta, C., Candela, I., Luna, A., et al: ‘Hierarchical control of hv-mtdc systems with droop-based primary and opf-based secondary’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 15021510.
    25. 25)
      • 26. Gnanarathna, U.N., Gole, A.M., Jayasinghe, R.P.: ‘Efficient modeling of modular multilevel hvdc converters (mmc) on electromagnetic transient simulation programs’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 316324.
    26. 26)
      • 21. Li, Y., Xu, Z., Østergaard, J., et al: ‘Coordinated control strategies for offshore wind farm integration via vsc-hvdc for system frequency support’, IEEE Trans. Energy Convers., 2017, 32, (3), pp. 843856.
    27. 27)
      • 25. ABB: ‘Zhangbei; the world's first dc-grid with hvdc light textregistered’. Available at https://new.abb.com/news/detail/4224/evolution-of-hvdc-lightr.
    28. 28)
      • 40. Abdelwahed, M.A., El-Saadany, E.F.: ‘Power sharing control strategy of multiterminal vsc-hvdc transmission systems utilizing adaptive voltage droop’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 605615.
    29. 29)
      • 36. Satish Kumar, A., Prasad Padhy, B.: ‘Adaptive droop control strategy for autonomous power sharing and dc voltage control in wind farm-mtdc grids’, IET Renew. Power Gener., 2019, 13, (16), pp. 31803190.
    30. 30)
      • 1. ABB: ‘Evolution of hvdc light textregistered’. Available at https://new.abb.com/news/detail/4224/evolution-of-hvdc-lightr.
    31. 31)
      • 7. Chaudhuri, N.R., Majumder, R., Chaudhuri, B.: ‘System frequency support through multi-terminal dc (mtdc) grids’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 347356.
    32. 32)
      • 22. Vennelaganti, S.G., Chaudhuri, N.R.: ‘Selective power routing in mtdc grids for inertial and primary frequency support’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 70207030.
    33. 33)
      • 31. Beerten, J., Belmans, R.: ‘Analysis of power sharing and voltage deviations in droop-controlled dc grids’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 45884597.
    34. 34)
      • 32. Xiao, L., Xu, Z., An, T., et al: ‘Improved analytical model for the study of steady state performance of droop-controlled vsc-mtdc systems’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 20832093.
    35. 35)
      • 4. ABB: ‘Special report 60 years of hvdc’, ABB review, The corporate technical journal, 2014.
    36. 36)
      • 11. Adeuyi, O.D., Cheah-Mane, M., Liang, J., et al: ‘Fast frequency response from offshore multiterminal vsc–hvdc schemes’, IEEE Trans. Power Deliv., 2017, 32, (6), pp. 24422452.
    37. 37)
      • 35. Li, B., Li, Q., Wang, Y., et al: ‘A novel method to determine droop coefficients of dc voltage control for vsc-mtdc system’, IEEE Trans. Power Deliv., 2020, 35, pp. 11.
    38. 38)
      • 38. Rouzbehi, K., Miranian, A., Candela, J.I., et al: ‘A generalized voltage droop strategy for control of multiterminal dc grids’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 607618.
    39. 39)
      • 28. Saad, H., Peralta, J., Dennetière, S., et al: ‘Dynamic averaged and simplified models for mmc-based hvdc transmission systems’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 17231730.
    40. 40)
      • 8. Liu, H., Chen, Z.: ‘Contribution of vsc-hvdc to frequency regulation of power systems with offshore wind generation’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 918926.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0921
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0921
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address