access icon free Predictive event-triggered H load frequency control for hybrid power systems under denial-of-service attacks

In this study, a novel predictive event-triggered load frequency control has been developed for a hybrid power system with renewable energy sources (RESs) to deal with denial-of-service (DoS) attacks, where the DoS duration (the time attack lasts) are boundless. A predictive event-triggered transmission scheme is built for the multi-area hybrid power systems under DoS attacks to reduce the load of network bandwidth while maintaining adequate levels of performance. Therefore, an observer-based predictive controller is developed in the presence of both external disturbances and DoS attacks by formulating the LFC problem as a disturbance attenuation issue. In the proposed method, a hybrid power system with RESs is used to achieve novel and better security strategies. Based on the new model, sufficient conditions are obtained using the Lyapunov stability theory to ensure a stable multi-area hybrid power system with a prescribed performance. Moreover, an algorithm is provided to obtain the control strategy of DoS attacks. Finally, the simulation of a hybrid power system with RESs is presented to demonstrate the effectiveness of the proposed method in dealing with the DoS attacks.

Inspec keywords: power system interconnection; power system control; Lyapunov methods; distributed control; hybrid power systems; renewable energy sources; power system security; power grids; power system stability; computer network security; observers; frequency control; predictive control; load regulation; H∞ control

Other keywords: RES; Lyapunov stability theory; predictive event-triggered transmission; denial-of-service attacks; renewable energy sources; multiarea hybrid power systems; LFC problem; observer-based predictive controller; power grids; multiarea hybrid power system stability; DoS attacks; event-triggered load frequency control; predictive event-triggered H∞ load frequency control

Subjects: Power engineering computing; Simulation, modelling and identification; Solar power stations and photovoltaic power systems; Power system protection; Power system control; Frequency control; Power system management, operation and economics; Control engineering computing; Multivariable control systems; Stability in control theory; Control of electric power systems; Computer communications; Optimal control; Computer networks and techniques

References

    1. 1)
      • 30. Peng, C., Sun, H.: ‘Switching-like event-triggered control for networked control systems under malicious denial of service attacks’, IEEE Trans. Autom. Control, 2020, 65, (9), pp. 39433949.
    2. 2)
      • 8. Liu, J., Gu, Y., Zha, L., et al: ‘Event-triggered H load frequency control for multiarea power systems under hybrid cyber attacks’, IEEE Trans. Syst., Man, Cybern. Syst., 2019, 49, (8), pp. 16651678.
    3. 3)
      • 24. Deng, Y., Yin, X., Hu, S.: ‘Event-triggered predictive control for networked control systems with doS attacks’, Inf. Sci., 2021, 542, pp. 7191.
    4. 4)
      • 23. Peng, C., Li, J., Fei, M.: ‘Resilient event-triggering H load frequency control for multi-area power systems with energy-limited doS attacks’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 41104118.
    5. 5)
      • 19. Awal, M.A., Yu, H., Tu, H., et al: ‘Hierarchical control for virtual oscillator based grid-connected and islanded microgrids’, IEEE Trans. Power Electron., 2020, 35, (1), pp. 9881001.
    6. 6)
      • 11. Lai, J., Lu, X.: ‘Nonlinear mean-square power sharing control for AC microgrids under distributed event detection’, IEEE Trans. Ind. Inf., 2021, 17, (1), pp. 219229.
    7. 7)
      • 34. Yang, D., Wang, B., Cai, G., et al: ‘Inertia-adaptive model predictive control-based load frequency control for interconnected power systems with wind power’, IET Gener. Transm. Distrib., 2020, 14, (22), pp. 50295036.
    8. 8)
      • 37. Vafamand, N., Asemani, M.H., Dragicevic, T., et al: ‘Fuzzy-observer-Based predictive stabilization of DC microgrids with power buffers through an imperfect 5G network’, IEEE Syst. J., 2020, 14, (3), pp. 40254035.
    9. 9)
      • 25. Guo, L., Yu, H., Hao, F.: ‘Event-triggered control for stochastic networked control systems against denial-of-service attacks’, Inf. Sci., 2020, 527, pp. 5169.
    10. 10)
      • 3. Jena, N.K., Patel, N.C., Sahoo, S., et al: ‘Application of fractional order cascaded controller for AGC study in power system integrated with renewable sources’, Int. J. Renew. Energy Res., 2020, 10, (1), pp. 89100.
    11. 11)
      • 16. Zhang, B., Dou, C., Yue, D., et al: ‘A cyber-physical cooperative hierarchical control strategy for islanded microgrid facing with random communication failure’, IEEE Syst. J., 2020, 14, (2), pp. 28492860.
    12. 12)
      • 9. Ma, R., Shi, P., Wu, L.: ‘Dissipativity-based sliding-mode control of cyber-physical systems under denial-of-service attacks’, IEEE Trans. Cybern., 2020, pp. 113, doi: 10.1109/TCYB.2020.2975089.
    13. 13)
      • 39. Patel, A., Purwar, S.: ‘Event-triggered detection of cyberattacks on load frequency control’, IET Cyber-Phys. Syst.: Theor. Appl., 2020, 5, (3), pp. 263273.
    14. 14)
      • 26. Zhang, H., Liu, J., Xu, S.: ‘H-infinity load frequency control of networked power systems via an event-triggered scheme’, IEEE Trans. Ind. Electron., 2020, 67, (8), pp. 71047113.
    15. 15)
      • 29. Chen, M., Xiao, X.: ‘Secondary voltage control in islanded microgrids using event-triggered control’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 18721878.
    16. 16)
      • 13. Lai, J., Lu, X., Yu, X., et al: ‘Distributed voltage regulation for cyber-physical microgrids with coupling delays and slow switching topologies’, IEEE Trans. Syst., Man, Cybern.: Syst., 2020, 50, (1), pp. 100110.
    17. 17)
      • 10. Lai, J., Lu, X., Yu, X., et al: ‘Stochastic distributed secondary control for AC microgrids via event-triggered communication’, IEEE Trans. Smart Grid, 2020, 11, (4), pp. 27462759.
    18. 18)
      • 41. Bi, W., Zhang, K., Li, Y., et al: ‘Detection scheme against cyber-physical attacks on load frequency control based on dynamic characteristics analysis’, IEEE Syst. J., 2019, 13, (3), pp. 28592868.
    19. 19)
      • 42. Wu, Y., Wei, Z., Weng, J., et al: ‘Resonance attacks on load frequency control of smart grids’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 44904502.
    20. 20)
      • 15. Lai, J., Lu, X., Yu, X., et al: ‘Distributed multi-DER cooperative control for master-slave-organized microgrid networks with limited communication bandwidth’, IEEE Trans. Ind. Inf., 2019, 15, (6), pp. 34433456.
    21. 21)
      • 7. Zhou, X., Gu, Z., Yang, F.: ‘Resilient event-triggered output feedback control for load frequency control systems subject to cyber attacks’, IEEE Access, 2019, 7, pp. 5895158958.
    22. 22)
      • 20. Wu, Z., Mo, H., Xiong, J., et al: ‘Adaptive event-triggered observer-based output feedback L load frequency control for networked power systems’, IEEE Trans. Ind. Inf., 2020, 16, (6), pp. 39523962.
    23. 23)
      • 36. Setiadi, H., Mithulananthan, N., Shah, R., et al: ‘Resilient wide-area multi-mode controller design based on bat algorithm for power systems with renewable power generation and battery energy storage systems’, IET Gener. Transm. Distrib., 2019, 13, (10), pp. 18841894.
    24. 24)
      • 32. Yang, C., Yao, W., Fang, J., et al: ‘Dynamic event-triggered robust secondary frequency control for islanded AC microgrid’, Appl. Energy, 2019, 242, (C), pp. 821836.
    25. 25)
      • 21. Sun, H., Peng, C., Yue, D., et al: ‘Resilient load frequency control of cyber-physical power systems under qoS-dependent event-triggered communication’, IEEE Trans. Syst., Man, Cybern. Syst., 2020, doi: 10.1109/TSMC.2020.2979992.
    26. 26)
      • 6. Kumar, A., Shankar, G.: ‘Load frequency control assessment of tidal power plant and capacitive energy storage systems supported microgrid’, IET Gener. Transm. Distrib., 2020, 14, (7), pp. 12791291.
    27. 27)
      • 35. Kumar, N., Singh, B., Panigrahi, B.K.: ‘Grid synchronisation framework for partially shaded solar PV-based microgrid using intelligent control strategy’, IET Gener. Transm. Distrib., 2018, 13, (6), pp. 829837.
    28. 28)
      • 27. Hossain, M.M., Peng, C.: ‘Observer-based event triggering H LFC for multi-area power systems under doS attacks’, Inf. Sci., 2021, 543, pp. 437453.
    29. 29)
      • 12. Lai, J., Lu, X., Monti, A.: ‘Distributed secondary voltage control for autonomous microgrids under additive measurement noises and time delays’, IET Gener. Transm. Distrib., 2019, 13, (14), pp. 29762985.
    30. 30)
      • 40. Bi, W., Chen, C., Zhang, K.: ‘Optimal strategy of attack-defense interaction over load frequency control considering incomplete information’, IEEE Access, 2019, 7, pp. 37534275349.
    31. 31)
      • 17. Wu, X., Xu, Y., He, J., et al: ‘Pinning-based hierarchical and distributed cooperative control for AC microgrid clusters’, IEEE Trans. Power Electron., 2020, 35, (9), pp. 98659885.
    32. 32)
      • 2. Bartolucci, L., Cordiner, S., Mulone, V., et al: ‘Hybrid renewable energy systems for household ancillary services’, Int. J. Electr. Power Energy Syst., 2019, 107, pp. 282297.
    33. 33)
      • 18. Li, F., Lin, Z., Qian, Z., et al: ‘A dual-window DC bus interacting method for DC microgrids hierarchical control scheme’, IEEE Trans. Sustain. Energy, 2020, 11, (2), pp. 652661.
    34. 34)
      • 33. Yan, H., Han, J., Zhang, H., et al: ‘Adaptive event-triggered predictive control for finite time microgrid’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2020, 67, (3), pp. 10351044.
    35. 35)
      • 4. Magdy, G., Shabib, G., Elbaset, A.A., et al: ‘Decentralized optimal LFC for a real hybrid power system considering renewable energy sources’, J. Eng. Sci. Technol., 2019, 14, (2), pp. 682697.
    36. 36)
      • 28. Cheng, Z., Yue, D., Lan, X., et al: ‘∞ prediction triggering control of multi-area power systems load frequency control under doS attacks’, in Li, K., Xue, Y., Cui, S., Niu, Q., Yang, Z., Luk, P. (Eds.): ‘Advanced computational methods in energy, power, electr. vehicles, and their integr’ (Springer, Singapore, 2017), pp. 477487.
    37. 37)
      • 38. Kerdphol, T., Rahman, F.S., Mitani, Y.: ‘Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration’, Energies, 2018, 11, (4), p. 981.
    38. 38)
      • 14. Lai, J., Lu, X., Monti, A., et al: ‘Event-driven distributed active and reactive power dispatch for CCVSI-based distributed generators in AC microgrids’, IEEE Trans. Ind. Appl., 2020, 56, (3), pp. 31253136.
    39. 39)
      • 1. Rahman, M.M., Velayutham, E.: ‘Renewable and non-renewable energy consumption-economic growth nexus: new evidence from South Asia’, Renew. Energy, 2020, 147, pp. 399408.
    40. 40)
      • 5. Syed, M.H., Guillo-Sansano, E., Blair, S.M., et al: ‘Enhanced load frequency control: incorporating locational information for temporal enhancement’, IET Gener. Transm. Distrib., 2019, 13, (10), pp. 18651874.
    41. 41)
      • 22. Lu, K.-D., Zeng, G.-Q., Luo, X., et al: ‘An adaptive resilient load frequency controller for smart grids with doS attacks’, IEEE Trans. Veh. Technol., 2020, 69, (5), pp. 46894699.
    42. 42)
      • 31. Peng, C., Ma, S., Xie, X.: ‘Observer-based non-PDC control for networked T–S fuzzy systems with an event-triggered communication’, IEEE Trans. Cybern., 2017, 47, (8), pp. 22792287.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0905
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0905
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading