Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and HIL implementation of a new robust fractional sliding mode control of microgrids

Microgrid inverters in the presence of faults, unavoidable modelling uncertainties, disturbance and harmonic current resulting from nonlinear loads should have small steady state tracking error, small THD and high robustness hence this subject has turned one of the motivations of this investigation. To achieve the stated goals, fractional adaptive sliding mode controller (FASMC) is proposed in this paper. The proposed controller increases the robustness, flexibility and degree of freedom. As far as in practice it is not easy to define the bounds of disturbances and guarantee the system stability, hence in next step, to overcome this challenge the adaptation laws are suggested. Then for the problem of determining the controller parameters, Particle Swarm Optimization (PSO) algorithm is used. The performance of the proposed technique is investigated for an islanded microgrid under different disturbances, also to verify the advantages of the proposed controller, the results are compared with other controllers. Finally, the proposed controller and PID controller are implemented experimentally on Arduino mega 2560 microcontroller.

References

    1. 1)
      • 42. Al-Saedi, W., Lachowicz, S.W., Habibi, D., et al: ‘Power flow control in grid-connected microgrid operation using particle swarm optimization under variable load conditions’, Int. J. Electr. Power Energy Syst., 2013, 49, pp. 7685.
    2. 2)
      • 39. Adhikari, S., Li, F.: ‘Coordinated Vf and Pq control of solar photovoltaic generators with Mppt and battery storage in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 12701281.
    3. 3)
      • 33. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Springer Science & Business Media, Germany2007).
    4. 4)
      • 30. Li, Y., Chen, Y., Podlubny, I.: ‘Stability of fractional-order nonlinear dynamic systems: lyapunov direct method and generalized Mittag–Leffler stability’, Comput. Math. Appl., 2010, 59, (5), pp. 18101821.
    5. 5)
      • 38. Guerrero, J.M., De Vicuna, L.G., Matas, J., et al: ‘Output impedance design of parallel-connected ups inverters with wireless load-sharing control’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11261135.
    6. 6)
    7. 7)
      • 47. Zhan, Z.-H., Zhang, J., Li, Y., et al: ‘Adaptive particle swarm optimization’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2009, 39, (6), pp. 13621381.
    8. 8)
      • 29. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., et al: ‘Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2015, 22, (1), pp. 650659.
    9. 9)
      • 46. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, (9–10), pp. 924941.
    10. 10)
    11. 11)
      • 11. Vidyasagar, P., Shanti, S.: ‘Model predictive control approach for frequency and voltage control of standalone micro-grid’, IET Gener. Transm. Distrib., 2018, 12, (14), pp. 34053413.
    12. 12)
      • 24. Delavari, H., Lanusse, P., Sabatier, J.: ‘Fractional order controller design for a flexible link manipulator robot’, Asian J. Control, 2013, 15, (3), pp. 783795.
    13. 13)
      • 44. Mohadeszadeh, M., Delavari, H.: ‘Synchronization of uncertain fractional-order hyper-chaotic systems via a novel adaptive interval type-2 fuzzy active sliding mode controller’, Int. J. Dyn. Control, 2015, pp. 110.
    14. 14)
      • 31. Li, Y., Chen, Y., Podlubny, I.: ‘Mittag–Leffler stability of fractional order nonlinear dynamic systems’, Automatica, 2009, 45, (8), pp. 19651969.
    15. 15)
      • 8. Etemadi, A.H., Davison, E.J., Iravani, R.: ‘A generalized decentralized robust control of islanded microgrids’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 31023113.
    16. 16)
    17. 17)
      • 6. Gudey, S.K., Gupta, R.: ‘Recursive fast terminal sliding mode control in voltage source inverter for a low-voltage microgrid system’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 15361543.
    18. 18)
      • 18. Shoja-Majidabad, S.: ‘Robust rejection of matched/unmatched perturbations from fractional-order nonlinear systems’, J. Control Autom. Electr. Syst., 2016, 27, (5), pp. 485496.
    19. 19)
      • 22. Delavari, H., Baleanu, D., Sadati, J.: ‘Stability analysis of caputo fractional-order nonlinear systems revisited’, Nonlinear Dyn., 2012, 67, (4), pp. 24332439.
    20. 20)
      • 27. Podlubny, I.: ‘Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications’ (Academic press, London, UK, 1998).
    21. 21)
      • 45. Davila, J.: ‘Exact tracking using backstepping control design and high-order sliding modes’, IEEE Trans. Autom. Control, 2013, 58, (8), pp. 20772081.
    22. 22)
      • 32. Bhende, C., Mishra, S., Malla, S.G.: ‘Permanent magnet synchronous generator-based standalone wind energy supply system’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 361373.
    23. 23)
      • 16. Sun, K., Mou, S., Qiu, J., et al: ‘Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints’, IEEE Trans. Fuzzy Syst., 2018, 27, (8), pp. 15871601.
    24. 24)
      • 5. Habibi, F., Naghshbandy, A.H., Bevrani, H.: ‘Robust voltage controller design for an isolated microgrid using kharitonov's theorem and D-stability concept’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 656665.
    25. 25)
      • 15. Riverso, S., Sarzo, F., Ferrari-Trecate, G.: ‘Plug-and-play voltage and frequency control of islanded microgrids with meshed topology’, IEEE Trans. Smart Grid, 2014, 6, (3), pp. 11761184.
    26. 26)
      • 17. Pan, I., Das, S.: ‘Kriging based surrogate modeling for fractional order control of microgrids’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 3644.
    27. 27)
      • 20. Hoseini, S.K., Pouresmaeil, E., Hosseinnia, S.H., et al: ‘A control approach for the operation of dg units under variations of interfacing impedance in grid-connected mode’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 18.
    28. 28)
      • 9. Rezaei, M.M., Soltani, J.: ‘Robust control of an islanded multi-bus microgrid based on input–output feedback linearisation and sliding mode control’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 24472454.
    29. 29)
      • 13. Bevrani, H., Shokoohi, S.: ‘An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 15051513.
    30. 30)
      • 40. Guerrero, J.M., Matas, J., de Vicuna, L.G., et al: ‘Decentralized control for parallel operation of distributed generation inverters using resistive output impedance’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 9941004.
    31. 31)
    32. 32)
      • 7. Ghanbarian, M.M., Nayeripour, M., Rajaei, A., et al: ‘Design and implementation of a new modified sliding mode controller for grid-connected inverter to controlling the voltage and frequency’, ISA Trans., 2016, 61, pp. 179187.
    33. 33)
      • 34. Kachhiya, K., Lokhande, M., Patel, M.: ‘MATLAB/Simulink model of solar PV module and MPPT algorithm’. Proceedings of the National Conf. on Recent Trends in Engineering & Technology, Anand, Gujarat, India, 2011.
    34. 34)
      • 12. Babazadeh, M., Karimi, H.: ‘A robust two-degree-of-freedom control strategy for an islanded microgrid’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 13391347.
    35. 35)
      • 48. Gaing, Z.-L.: ‘A particle swarm optimization approach for optimum design of Pid controller in Avr system’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 384391.
    36. 36)
      • 21. Hosseinnia, S.H., Tejado, I., Milanés, V., et al: ‘Experimental application of hybrid fractional-order adaptive cruise control at low speed’, IEEE Trans. Control Syst. Technol., 2014, 22, (6), pp. 23292336.
    37. 37)
      • 26. Poli, R., Kennedy, J., Blackwell, T.: ‘Particle swarm optimization’, Swarm Intell., 2007, 1, (1), pp. 3357.
    38. 38)
    39. 39)
      • 2. Delavari, H., Naderian, S.: ‘Backstepping fractional sliding mode voltage control of an islanded microgrid’, IET Gener. Transm. Distrib., 2019, 13, (12), pp. 24642473.
    40. 40)
      • 14. Cucuzzella, M., Incremona, G.P., Ferrara, A.: ‘Design of robust higher order sliding mode control for microgrids’, IEEE J. Emerging Sel. Top. Circuits Syst., 2015, 5, (3), pp. 393401.
    41. 41)
      • 3. Bevrani, H., François, B., Ise, T.: ‘Microgrid dynamics and control’ (John Wiley & Sons, Hoboken, New Jersey, USA, 2017).
    42. 42)
      • 43. Pourmahmood Aghababa, M., Haghighi, R., Roohi, M.: ‘Stabilisation of unknown fractional-order chaotic systems: an adaptive switching control strategy with application to power systems’, IET Gener. Transm. Distrib., 2015, 9, pp. 18831893.
    43. 43)
    44. 44)
      • 28. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: ‘Lyapunov functions for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (9), pp. 29512957.
    45. 45)
      • 37. Mobayen, S.: ‘An adaptive chattering-free Pid sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems’, Nonlinear Dyn., 2015, 82, (1–2), pp. 5360.
    46. 46)
      • 36. Eghtedarpour, N., Farjah, E.: ‘Control strategy for distributed integration of photovoltaic and energy storage systems in dc micro-grids’, Renew. Energy, 2012, 45, pp. 96110.
    47. 47)
      • 10. Hamzeh, M., Emamian, S., Karimi, H., et al: ‘Robust control of an islanded microgrid under unbalanced and nonlinear load conditions’, IEEE J. Emerging Sel. Topics Power Electron., 2016, 4, (2), pp. 512520.
    48. 48)
      • 41. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in Ac microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    49. 49)
      • 4. Chen, Z., Luo, A., Wang, H., et al: ‘Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 133143.
    50. 50)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2020.0865
Loading

Related content

content/journals/10.1049/iet-gtd.2020.0865
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address